Skip to main content
Log in

Developmental changes in β-subunit composition of Na,K-ATPase in the Drosophila eye

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The Drosophila genome contains at least three loci for the Na,K-ATPase β-subunit; however, only the protein products of nrv1 and nrv2 have been characterized hitherto. Here, we provide evidence that nrv3 also encodes for a functional Na,K-ATPase β-subunit, as its protein product co-precipitates with the Na,K-ATPase α-subunit. Nrv3 expression in adult flies is restricted to the nervous system in which Nrv3 is enriched in selective types of sensory cells. Because Nrv3 expression is especially prominent in the compound eye, we have analyzed the subcellular and developmental distribution of Nrv3 within the visual cells and related this distribution to those of the α-subunit and of the β-subunits Nrv1 and Nrv2. Prospective visual cells express Nrv2 in the third larval instar stage and during the first half of pupal development. During the last third of pupal life, Nrv3 gradually replaces Nrv2 as the Na,K-ATPase β-subunit in the photoreceptor cells. Adult photoreceptors express Nrv3 as their major β-subunit; the visual cells R1–R6 co-express Nrv2 at a low level, whereas R7 and R8 co-express Nrv1. Notably, β-subunits do not co-distribute exactly with the α-subunit at some developmental stages, supporting the concept that the α-subunit and β-subunit can exist in the plasma membrane without being engaged in α/β heterodimers. The non-visual cells within the compound eye express almost exclusively Nrv2, which segregates together with the α-subunit to septate junctions throughout development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aydemir-Koksoy A, Abramowitz J, Allen JC (2001) Ouabain-induced signaling and vascular smooth muscle cell proliferation. J Biol Chem 276:46605–46611

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Bainton RJ, Mayer N, Beckstead R, Bhat MA (2008) Septate junctions are required for ommatidial integrity and blood-eye barrier function in Drosophila. Dev Biol 317:585–599

    Article  CAS  PubMed  Google Scholar 

  • Baumann O (2004) Spatial pattern of nonmuscle myosin-II distribution during the development of the Drosophila compound eye and implications for retinal morphogenesis. Dev Biol 269:519–533

    Article  CAS  PubMed  Google Scholar 

  • Baumann O, Lautenschläger B, Takeyasu K (1994) Immunolocalization of Na, K-ATPase in blowfly photoreceptor cells. Cell Tissue Res 275:225–234

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA, Chiquet-Ehrismann R, Prokop A, Bellen HJ (1996) A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  • Buszczak M, Paterno S, Lighthouse D, Bachman J, Planck J, Owen S, Skora AD, Nystul TG, Ohlstein B, Allen A, Wilhelm JE, Murphy TD, Levis RW, Matunis E, Srivali N, Hoskins RA, Spradling AC (2007) The Carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175:1505–1531

    Article  CAS  PubMed  Google Scholar 

  • Cagan RL, Ready DF (1989) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362

    Article  CAS  PubMed  Google Scholar 

  • Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN, Horisberger JD, Lelièvre L, Geering K (2000) Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J Biol Chem 275:1976–1986

    Article  CAS  PubMed  Google Scholar 

  • Genova JL, Fehon RG (2003) Neuroglian, Gliotactin, and the Na+/K+ ATPase are essential for septate junction function in Drosophila. J Cell Biol 161:979–989

    Article  CAS  PubMed  Google Scholar 

  • Gloor S, Antonicek H, Sweadner KJ, Pagliusi S, Frank R, Moos M, Schachner M (1990) The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na, K-ATPase. J Cell Biol 110:165–174

    Article  CAS  PubMed  Google Scholar 

  • Gorokhova S, Bibert S, Geering K, Heintz N (2007) A novel family of transmembrane proteins interacting with β subunits of the Na, K-ATPase. Hum Mol Genet 16:2394–2410

    Article  CAS  PubMed  Google Scholar 

  • Hamrick M, Renaud KJ, Fambrough DM (1993) Assembly of the extracellular domain of the Na,K-ATPase β subunit with the α subunit. Analysis of β subunit chimeras and carboxyl-terminal deletions. J Biol Chem 268:24367–24373

    CAS  PubMed  Google Scholar 

  • Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neurosci 9:419–423

    Article  Google Scholar 

  • Horisberger JD (2004) Recent insights into the structure and mechanism of the sodium pump. Physiology 19:377–387

    Article  CAS  PubMed  Google Scholar 

  • Hsiung F, Moses K (2002) Retinal development in Drosophila: specifying the first neuron. Hum Mol Genet 11:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Takeyasu K (1995) The C-terminal 165 amino acids of the plasma membrane Ca2+-ATPase confer Ca2+/calmodulin sensitivity on the Na+, K+-ATPase α-subunit. EMBO J 14:58–67

    CAS  PubMed  Google Scholar 

  • Jorgensen PL (2001) Aspects of gene structure and functional regulation of the isozymes of Na,K-ATPase. Cell Mol Biol (Noisy-le-grand) 47:231–238

    CAS  Google Scholar 

  • Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535

    Article  CAS  PubMed  Google Scholar 

  • Kometiani P, Li J, Gnudi L, Kahn BB, Askari A, Xie Z (1998) Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases. J Biol Chem 273:15249–15256

    Article  CAS  PubMed  Google Scholar 

  • Krupinski T, Beitel GJ (2009) Unexpected roles of the Na-K-ATPase and other ion transporters in cell junctions and tubulogenesis. Physiology 24:192–201

    Article  CAS  PubMed  Google Scholar 

  • Laprise P, Lau KM, Harris KP, Silva-Gagliardi NF, Paul SM, Beronja S, Beitel GJ, McGlade CJ, Tepass U (2009) Yurt, Coracle, Neurexin IV and the Na+, K+-ATPase form a novel group of epithelial polarity proteins. Nature 459:1141–1145

    Article  CAS  PubMed  Google Scholar 

  • Lebovitz RM, Takeyasu K, Fambrough DM (1989) Molecular characterization and expression of the Na+ + K+-ATPase alpha-subunit in Drosophila melanogaster. EMBO J 8:193–202

    CAS  PubMed  Google Scholar 

  • Longley RL Jr, Ready DF (1995) Integrins and the development of three-dimensional structure in the Drosophila compound eye. Dev Biol 171:415–433

    Article  CAS  PubMed  Google Scholar 

  • Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci USA 98:15050–15055

    Article  CAS  PubMed  Google Scholar 

  • Okamura H, Yasuhara JC, Fambrough DM, Takeyasu K (2003) P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na, K-ATPase and H, K-ATPase subgroup. J Membr Biol 191:13–24

    Article  CAS  PubMed  Google Scholar 

  • O’Neill EM, Rebay I, Tjian R, Rubin GM (1994) The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78:137–147

    Article  PubMed  Google Scholar 

  • Palladino MJ, Bower JE, Kreber R, Ganetzky B (2003) Neural dysfunction and neurodegeneration in Drosophila Na+/K+ ATPase alpha subunit mutants. J Neurosci 23:1276–1286

    CAS  PubMed  Google Scholar 

  • Parnas D, Haghighi AP, Fetter RD, Kim SW, Goodman CS (2001) Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron 32:415–424

    Article  CAS  PubMed  Google Scholar 

  • Paul SM, Ternet M, Salvaterra PM, Beitel GJ (2003) The Na+, K + ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130:4963–4974

    Article  CAS  PubMed  Google Scholar 

  • Paul SM, Palladino MJ, Beitel GJ (2007) A pump-independent function of the Na, K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134:147–155

    Article  CAS  PubMed  Google Scholar 

  • Perry MM (1968) Further studies on the development of the of Drosophila melanogaster. II. The interommatidial bristles. J Morphol 124:249–262

    Article  CAS  PubMed  Google Scholar 

  • Quiñones-Coello AT, Petrella LN, Ayers K, Melillo A, Mazzalupo S, Hudson AM, Wang S, Castiblanco C, Buszczak M, Hoskins RA, Cooley L (2007) Exploring strategies for protein trapping in Drosophila. Genetics 175:1089–1104

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Kavlie RG, Eberl DF (2007) Larval lethality in mutations of nervana 3, which encodes the beta subunit of Na/K ATPase. A Dros Res Conf 48:646A

    Google Scholar 

  • Shoshani L, Contreras RG, Roldán ML, Moreno J, Lázaro A, Balda MS, Matter K, Cereijido M (2005) The polarized expression of Na+, K+-ATPase in epithelia depends on the association between beta-subunits located in neighboring cells. Mol Biol Cell 16:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Sumbilla C, Lu L, Lewis DE, Inesi G, Ishii T, Takeyasu K, Feng Y, Fambrough DM (1993) Ca2+-dependent and thapsigargin-inhibited phosphorylation of Na+, K+-ATPase catalytic domain following chimeric recombination with Ca2+-ATPase. J Biol Chem 268:21185–21192

    CAS  PubMed  Google Scholar 

  • Sun B, Salvaterra PM (1995) Characterization of nervana, a Drosophila melanogaster neuron-specific glycoprotein antigen recognized by anti-horseradish peroxidase antibodies. J Neurochem 65:434–443

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Wang W, Salvaterra PM (1998) Functional analysis and tissue-specific expression of Drosophila Na+, K+-ATPase subunits. J Neurochem 71:142–251

    CAS  PubMed  Google Scholar 

  • Takeyasu K, Tamkun MM, Renaud KJ, Fambrough DM (1988) Ouabain-sensitive Na+ + K+-ATPase activity expressed in mouse L cells by transfection with DNA encoding the alpha-subunit of an avian sodium pump. J Biol Chem 263:4347–4354

    CAS  PubMed  Google Scholar 

  • Takeyasu K, Okamura H, Yasuhara JC, Ogita Y, Yoshimura SH (2001) P-type ATPase diversity and evolution: the origins of ouabain sensitivity and subunit assembly. Cell Mol Biol (Noisy-le-grand) 47:32–333

    Google Scholar 

  • Tepass U, Harris KP (2007) Adherens junctions in Drosophila retinal morphogenesis. Trends Cell Biol 17:26–35

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson A, Ready DF (1987) Neuronal differentiation in Drosophila ommatidium. Dev Biol 120:366–376

    Article  CAS  PubMed  Google Scholar 

  • Vagin O, Turikulova S, Sachs G (2005) Recombinant addition of N-glycosylation sites to the basolateral Na, K-ATPase beta1 subunit results in its clustering in caveolae and apical sorting in HGT-1 cells. J Biol Chem 280:43159–43167

    Article  CAS  PubMed  Google Scholar 

  • Vagin O, Tokhtaeva E, Sachs G (2006) The role of the beta1 subunit of the Na, K-ATPase and its glycosylation in cell-cell adhesion. J Biol Chem 281:39573–39587

    Article  CAS  PubMed  Google Scholar 

  • Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113:841–850

    CAS  PubMed  Google Scholar 

  • Xu P, Sun B, Salvaterra PM (1999) Organization and transcriptional regulation of Drosophila Na+, K+-ATPase β subunit genes: Nrv1 and Nrv2. Gene 236:303–313

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara JC, Baumann O, Takeyasu K (2000) Localization of Na/K-ATPase in developing and adult Drosophila melanogaster photoreceptors. Cell Tissue Res 300:239–249

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura SH, Iwasaka S, Schwarz W, Takeyasu K (2008) Fast degradation of the auxiliary subunit of Na+/K+-ATPase in the plasma membrane of HeLa cells. J Cell Sci 121:2159–2168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Stefan Baumgartner, Greg Beitel, and the Developmental Studies Hybridoma Bank (University of Iowa) for antibodies, to Lynn Cooley, Allan C. Spradling, and the Bloomington Stock Center for fly lines, to Bärbel Wuntke, Aya Sato, Hidenobu Ando, and Yosuke Ishida for experimental assistance, and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Baumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, O., Salvaterra, P.M. & Takeyasu, K. Developmental changes in β-subunit composition of Na,K-ATPase in the Drosophila eye. Cell Tissue Res 340, 215–228 (2010). https://doi.org/10.1007/s00441-010-0948-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0948-x

Keywords

Navigation