Skip to main content

Advertisement

Log in

Characterization and differentiation potential of rat ventral mesencephalic neuronal progenitor cells immortalized with SV40 large T antigen

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

An Erratum to this article was published on 11 June 2010

Abstract

Neuronal progenitor cells (NPCs) possess high potential for use in regenerative medicine. To overcome their limited mitotic competence, various immortalization strategies have been applied that allow their prolonged maintenance and expansion in vitro. Such immortalized cells can be used for the design and discovery of new cell-based therapies for neurodegenerative diseases, such as Parkinson’s disease. We immortalized rat ventral mesencephalic NPCs by using SV40 large T antigen (SV40Tag). All cell clones displayed a two- to three–fold higher proliferation rate compared with the primary cells. In order to induce dopaminergic differentiation of generated cell clones, both glial-derived neurotrophic factor and di-butyryl cyclic adenosine monophosphate were applied. Treated cells were then characterized regarding the expression of dopaminergic lineage markers, differentiation of various cell populations, calcium imaging in the presence of kainate, and immunohistochemistry after intrastriatal transplantation. Treated cells displayed morphological maturation, and calcium imaging revealed neuronal properties in the presence of kainate. These cells also expressed low mRNA levels of the dopamine transporter and tyrosine hydroxylase (TH), although no TH-immunopositive neurons were found. Intrastriatal transplantation into the neurotoxin-lesioned rats did not induce further differentiation. As an alternative approach, we silenced SV40Tag with short interfering RNA, but this was not sufficient to trigger differentiation into dopaminergic neurons. Nevertheless, neuronal and glial cells were detected as shown by β-tubulin type III and glial fibrillary acidic protein staining, respectively. SV40Tag cells are suitable for carrying out controlled genetic modifications as shown by overexpression of enhanced green fluorescence protein after efficient non-viral transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

BDNF:

brain-derived neurotropic factor

cAMP:

di-butyryl cyclic adenosine monophosphate

DA:

dopamine

DAPI:

4,6-diamidino-2-phenylindole

DAT:

dopamine transporter

EGFP:

enhanced green fluorescence protein

E12:

embryonic day 12

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

GDNF:

glial cell line-derived neurotrophic factor

GFAP:

glial fibrillary acidic protein

KA:

kainate

NPCs:

neuronal progenitor cells

PD:

Parkinson’s disease

PFA:

paraformaldehyde

SDS:

sodium dodecyl sulfate

SV40:

simian virus 40

Tag:

large T antigen

TH:

tyrosine hydroxylase

VM:

ventral mesencephalic

6-OHDA:

6-hydroxydopamine

References

  • Abeliovich A, Hammond R (2007) Midbrain dopamine neuron differentiation: factors and fates. Dev Biol 304:447–454

    Article  CAS  PubMed  Google Scholar 

  • Adams F, La Rosa F, Kumar S, Edwards-Prasad J, Kentroti S, Vernadakis A, Freed C, Prasad K (1996) Characterization and transplantation of two neuronal cell lines with dopaminergic properties. Neurochem Res 21:619–627

    Article  CAS  PubMed  Google Scholar 

  • Ahuja D, Saenz-Robles MT, Pipas JM (2005) SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24:7729–7745

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulou A, Couchman J, Whiteford J (2008) The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors. BMC Cell Biol 9:2 (doi:10.1186/1471-2121-9-2)

    Article  PubMed  CAS  Google Scholar 

  • Andersson E, Tryggvason U, Deng Q, Friling S, Alekseenko Z, Robert B, Perlmann T, Ericson J (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124:393–405

    Article  CAS  PubMed  Google Scholar 

  • Bergen J, Park I, Horner P, Pun S (2008) Nonviral approaches for neuronal delivery of nucleic acids. Pharm Res 25:983–998

    Article  CAS  PubMed  Google Scholar 

  • Björklund H, Dahl D, Haglid K, Rosengren L, Olson L (1983) Astrocytic development in fetal parietal cortex grafted to cerebral and cerebellar cortex of immature rats. Brain Res 285:171–180

    PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  PubMed  Google Scholar 

  • Brundin P, Pogarell O, Hagell P, Piccini P, Widner H, Schrag A, Kupsch A, Crabb L, Odin P, Gustavii B, Bjorklund A, Brooks DJ, David Marsden C, Oertel WH, Quinn NP, Rehncrona S, Lindvall O (2000) Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain 123:1380–1390

    Article  PubMed  Google Scholar 

  • Cantalupo P, Sáenz-Robles M, Rathi A, Beerman R, Patterson W, Whitehead R, Pipas J (2009) Cell-type specific regulation of gene expression by simian virus 40 T antigens. Virology 386:183–191

    Article  CAS  PubMed  Google Scholar 

  • Carriedo SG, Sensi SL, Yin HZ, Weiss JH (2000) AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J Neurosci 20:240–250

    CAS  PubMed  Google Scholar 

  • Cesnulevicius K, Timmer M, Wesemann M, Thomas T, Barkhausen T, Grothe C (2006) Nucleofection is the most efficient nonviral transfection method for neuronal stem cells derived from ventral mesencephali with no changes in cell composition or dopaminergic fate. Stem Cells 24:2776–2791

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty K, Serchov T, Mann SA, Dietzel ID, Heumann R (2007) Enhancement of dopaminergic properties and protection mediated by neuronal activation of Ras in mouse ventral mesencephalic neurones. Eur J Neurosci 25:1971–1981

    Article  PubMed  Google Scholar 

  • Clarkson E, La Rosa F, Edwards-Prasad J, Kumar S, Kumar A, Cole W, Freed C, Prasad K (1998) Brain contains inhibiting factors specific to the large T-antigen gene. Cancer Lett 122:31–36

    Article  CAS  PubMed  Google Scholar 

  • Grosskreutz J, Haastert K, Dewil M, Van Damme P, Callewaert G, Robberecht W, Dengler R, Van Den Bosch L (2007) Role of mitochondria in kainate-induced fast Ca2+ transients in cultured spinal motor neurons. Cell Calcium 42:59–69

    Article  CAS  PubMed  Google Scholar 

  • Hoshimaru M, Ray J, Sah D, Gage F (1996) Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc Natl Acad Sci USA 93:1518–1523

    Article  CAS  PubMed  Google Scholar 

  • Hyman C, Hofer M, Barde Y, Juhasz M, Yancopoulos G, Squinto S, Lindsay R (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232

    Article  CAS  PubMed  Google Scholar 

  • Jat PS, Sharp PA (1989) Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol Cell Biol 9:1672–1681

    CAS  PubMed  Google Scholar 

  • König N, Poluch S, Estabel J, Durand M, Drian M, Exbrayat J (2001) Synaptic and non-synaptic AMPA receptors permeable to calcium. Jpn J Pharmacol 86:1–17

    Article  PubMed  Google Scholar 

  • La Rosa F, Adams F, Krause G, Meyers A, Edwards-Prasad J, Kumar R, Freed C, Prasad K (1997) Inhibition of proliferation and expression of T-antigen in SV40 large T-antigen gene-induced immortalized cells following transplantations. Cancer Lett 113:55–60

    Article  PubMed  Google Scholar 

  • Legrand A, Nachtigal M (1991) Homologous recombination of a plasmid containing the SV40 early region in rabbit cells. Intervirology 32:173–184

    CAS  PubMed  Google Scholar 

  • Lindholm P, Voutilainen M, Laurén J, Peränen J, Leppänen V, Andressoo J, Lindahl M, Janhunen S, Kalkkinen N, Timmusk T, Tuominen R, Saarma M (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448:73–77

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z (2009) Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 30:260–267

    Article  CAS  PubMed  Google Scholar 

  • Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P (2002) Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 277:38884–38894

    Article  CAS  PubMed  Google Scholar 

  • McNees A, White Z, Zanwar P, Vilchez R, Butel J (2005) Specific and quantitative detection of human polyomaviruses BKV, JCV, and SV40 by real time PCR. J Clin Virol 34:52–62

    Article  CAS  PubMed  Google Scholar 

  • Miljan EA, Hines SJ, Pande P, Corteling RL, Hicks C, Zbarsky V, Umachandran M, Sowinski P, Richardson S, Tang E, Wieruszew M, Patel S, Stroemer P, Sinden JD (2009) Implantation of c-mycERTAM immortalized human mesencephalic-derived clonal cell lines ameliorates behavior dysfunction in a rat model of Parkinson’s disease. Stem Cells Dev 18:307–320

    Article  CAS  PubMed  Google Scholar 

  • Molteni R, Ying Z, Gómez-Pinilla F (2002) Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 16:1107–1116

    Article  PubMed  Google Scholar 

  • Nikkhah G, Cunningham M, Jödicke A, Knappe U, Björklund A (1994a) Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model. Brain Res 633:133–143

    Article  CAS  PubMed  Google Scholar 

  • Nikkhah G, Olsson M, Eberhard J, Bentlage C, Cunningham M, Björklund A (1994b) A microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology. Neuroscience 63:57–72

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  CAS  PubMed  Google Scholar 

  • Ostenfeld T, Caldwell M, Prowse K, Linskens M, Jauniaux E, Svendsen C (2000) Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp Neurol 164:215–226

    Article  CAS  PubMed  Google Scholar 

  • Paul G, Christophersen N, Raymon H, Kiaer C, Smith R, Brundin P (2007) Tyrosine hydroxylase expression is unstable in a human immortalized mesencephalic cell line—studies in vitro and after intracerebral grafting in vivo. Mol Cell Neurosci 34:390–399

    Article  CAS  PubMed  Google Scholar 

  • Peterson A, Nutt J (2008) Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics 5:270–280

    Article  CAS  PubMed  Google Scholar 

  • Prasad K, Carvalho E, Kentroti S, Edwards-Prasad J, Freed C, Vernadakis A (1994) Establishment and characterization of immortalized clonal cell lines from fetal rat mesencephalic tissue. In Vitro Cell Dev Biol Anim 30A:596–603

    Article  CAS  PubMed  Google Scholar 

  • Ray F, Peabody D, Cooper J, Cram L, Kraemer P (1990) SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biochem 42:13–31

    Article  CAS  PubMed  Google Scholar 

  • Raye WS, Tochon-Danguy N, Pouton CW, Haynes JM (2007) Heterogeneous population of dopaminergic neurons derived from mouse embryonic stem cells: preliminary phenotyping based on receptor expression and function. Eur J Neurosci 25:1961–1970

    Article  PubMed  Google Scholar 

  • Simon HH, Bhatt L, Gherbassi D, Sgadó P, Alberí L (2003) Midbrain dopaminergic neurons: determination of their developmental fate by transcription factors. Ann N Y Acad Sci 991:36–47

    Article  CAS  PubMed  Google Scholar 

  • Smidt M, Burbach J (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8:21–32

    Article  CAS  PubMed  Google Scholar 

  • Southern P, Berg P (1982) Transformation of mammalian cells to antibiotic resistent with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1:327–341

    CAS  PubMed  Google Scholar 

  • Stubdal H, Zalvide J, DeCaprio JA (1996) Simian virus 40 large T antigen alters the phosphorylation state of the RB-related proteins p130 and p107. J Virol 70:2781–2788

    CAS  PubMed  Google Scholar 

  • Studer L, Tabar V, McKay R (1998) Transplantation of expanded mesencephalic precursors leads to recovery in Parkinsonian rats. Nat Neurosci 1:290–295

    Article  CAS  PubMed  Google Scholar 

  • Takayama H, Ray J, Raymon H, Baird A, Hogg J, Fisher L, Gage F (1995) Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson’s disease. Nat Med 1:53–58

    Article  CAS  PubMed  Google Scholar 

  • Timmer M, Müller-Ostermeyer F, Kloth V, Winkler C, Grothe C, Nikkhah G (2004) Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Exp Neurol 187:118–136

    Article  CAS  PubMed  Google Scholar 

  • Timmer M, Grosskreutz J, Schlesinger F, Krampfl K, Wesemann M, Just L, Bufler J, Grothe C (2006) Dopaminergic properties and function after grafting of attached neural precursor cultures. Neurobiol Dis 21:587–606

    Article  CAS  PubMed  Google Scholar 

  • Tomac A, Lindqvist E, Lin L, Ogren S, Young D, Hoffer B, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339

    Article  CAS  PubMed  Google Scholar 

  • Truckenmiller ME, Tornatore C, Wright RD, Dillon-Carter O, Meiners S, Geller HM, Freed WJ (1998) A truncated SV40 large T antigen lacking the p53 binding domain overcomes p53-induced growth arrest and immortalizes primary mesencephalic cells. Cell Tissue Res 291:175–189

    Article  CAS  PubMed  Google Scholar 

  • Vandenberghe W, Robberecht W, Brorson JR (2000) AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. J Neurosci 20:123–132

    CAS  PubMed  Google Scholar 

  • Villa A, Liste I, Courtois E, Seiz E, Ramos M, Meyer M, Juliusson B, Kusk P, Martínez-Serrano A (2009) Generation and properties of a new human ventral mesencephalic neural stem cell line. Exp Cell Res 315:1860–1874

    Article  CAS  PubMed  Google Scholar 

  • Volpicelli F, Perrone-Capano C, Da Pozzo P, Colucci-D’Amato L, Porzio U di (2004) Modulation of nurr1 gene expression in mesencephalic dopaminergic neurones. J Neurochem 88:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Winkler C, Kirik D, Björklund A, Dunnett S (2000) Transplantation in the rat model of Parkinson’s disease: ectopic versus homotopic graft placement. Prog Brain Res 127:233–265

    Article  CAS  PubMed  Google Scholar 

  • Winkler C, Kirik D, Björklund A, Cenci M (2002) L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Department of Experimental Nephrology (Hannover Medical School) for permission to use the Amaxa Nucleofector device. We gratefully acknowledge the generous gift of the pCAGGS-EGFP vector from Dr. J.R. Whiteford. We also thank Kerstin Kuhlemann, Hella Brinkmann, Natascha Heidrich, and Silke Fischer for excellent technical support and Jürgen Wittek, Serguei Tkachuk, Kerstin Schwabe, and Johannes Haile for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Grothe.

Additional information

This work was supported by EU Marie Curie host fellowships (A.N.) for early stage researchers training—MEST-CT-2005-021 014 (“ZSN-PHD Program”) and by Georg-Christoph-Lichtenberg scholarships (I.K., K.C., and D.R.) provided by the Ministry of Science and Culture of Lower Saxony, as part of the international PhD program of the Center for Systems Neuroscience Hannover, Germany.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00441-010-0999-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobre, A., Kalve, I., Cesnulevicius, K. et al. Characterization and differentiation potential of rat ventral mesencephalic neuronal progenitor cells immortalized with SV40 large T antigen. Cell Tissue Res 340, 29–43 (2010). https://doi.org/10.1007/s00441-010-0933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0933-4

Keywords

Navigation