Skip to main content
Log in

Localization of anionic constituents in mast cell granules of brachymorphic (bm/bm) mice by using avidin-conjugated colloidal gold

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We used the egg avidin gold complex as a polycationic probe for the localization of negatively charged sites in the secretory granules of mouse mast cells. We compared the binding of this reagent to mast cell granules in wild-type mice and in congenic brachymorphic mice in which mast cell secretory granules contained undersulfated proteoglycans. We localized anionic sites by post-embedding labeling of thin sections of mouse skin and tongue tissues fixed in Karnovsky’s fixative and OsO4 and embedded in Araldite. Transmission electron microscopy revealed that the mast cell granules of bm/bm mice had a lower optical density than those of wild-type mice (P<0.001) and a lower avidin gold binding density (by approximately 50%, P<0.001). The latter result provided additional evidence that the contents of mast cell granules in bm/bm mice were less highly sulfated than in those of wild-type mice. In both wild-type and bm/bm mast cells, the distribution of granule equivalent volumes was multimodal, but the unit granule volume was approximately 19% lower in bm/bm cells than in wild-type cells (P<0.05). Thus, bm/bm mast cells develop secretory granules that differ from those of wild-type mice in exhibiting a lower optical density and slightly smaller unit granules, however the processes that contribute to granule maturation and granule-granule fusion in mast cells are operative in bm/bm cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bayer EA, Wilchek M (1994) Modified avidins for application in avidin-biotin technology: an improvement on nature. In: Sim JS, Nakai S (eds) Egg uses and processing technologies. CAB International, Wallingford, pp 158–176

    Google Scholar 

  • Bergstresser PR, Tigelaar RE, Tharp MD (1984) Conjugated avidin identifies cutaneous rodent and human mast cells. J Invest Dermatol 83:214–218

    Article  CAS  PubMed  Google Scholar 

  • Bussolati G, Gugliotta P (1983) Nonspecific staining of mast cells by avidin-biotin-peroxidase complexes (ABC). J Histochem Cytochem 31:1419–1421

    CAS  PubMed  Google Scholar 

  • Chi EY, Lagunoff D (1975) Abnormal mast cell granules in the beige (Chédiak-Higashi syndrome) mouse. J Histochem Cytochem 23:117–122

    CAS  PubMed  Google Scholar 

  • Collins TJ (2007) ImageJ for microscopy. Biotechniques 43 (Suppl):25–30

    Article  PubMed  Google Scholar 

  • Danon D, Goldstein L, Marikovsky Y, Skutelsky E (1972) Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res 38:500

    Article  CAS  PubMed  Google Scholar 

  • Dvorak AM, Morgan ES (1998) Ribonuclease-gold labels heparin in human mast cell granules. New use for an ultrastructural enzyme affinity technique. J Histochem Cytochem 46:695–706

    CAS  PubMed  Google Scholar 

  • Dvorak AM, Dvorak HF, Galli SJ (1983) Ultrastructural criteria for identification of mast cells and basophils in humans, guinea pigs, and mice. Am Rev Respir Dis 128:S49–S52

    CAS  PubMed  Google Scholar 

  • Dvorak AM, Morgan ES, Lichtenstein LM, Weller PF, Schleimer RP (2000) RNA is closely associated with human mast cell secretory granules, suggesting a role(s) for granules in synthetic processes. J Histochem Cytochem 48:1–12

    CAS  PubMed  Google Scholar 

  • Enerbäck L (1966) Mast cells in rat gastrointestinal mucosa. 2. Dye-binding and metachromatic properties. Acta Pathol Microbiol Scand 66:303–312

    PubMed  Google Scholar 

  • Erlinger R, Schumacher U, Welsch U (1990) Ultrastructural localization of glycosaminoglycans in the human mammary gland. Acta Histochem Suppl 40:65–70

    CAS  PubMed  Google Scholar 

  • Farquhar MG, Palade GE (1981) The Golgi apparatus (complex)-(1954-1981)—from artifact to center stage. J Cell Biol 91:77s–103s

    Article  CAS  PubMed  Google Scholar 

  • Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8:1081–1083

    Article  CAS  PubMed  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodispersed gold suspensions. Nat Phys Sci 241:20–22

    CAS  Google Scholar 

  • Fritz P, Müller J, Reiser H, Saal JG, Hadam M, Tuczek HV, Wegner G, Laschner W (1986) Avidin-peroxidase. A new mast cell staining method. Acta Histochem Suppl 32:235–239

    CAS  PubMed  Google Scholar 

  • Gasic GJ, Berwick L, Sorrentino M (1968) Positive and negative colloidal iron as cell surface electron stains. Lab Invest 18:63–71

    CAS  PubMed  Google Scholar 

  • Goode NP, Shires M, Aparicio SR, Davison AM (1991) Cationic colloidal gold—a novel marker for the demonstration of glomerular polyanion status in roetin renal biopsies. Nephrol Dial Transplant 6:923–930

    CAS  PubMed  Google Scholar 

  • Green NM (1975) Avidin. Adv Protein Chem 29:85–133

    Article  CAS  PubMed  Google Scholar 

  • Gustafson GT, Pihl E (1967) Staining of mast cell acid glycosaminoglycans in ultrathin sections by ruthenium red. Nature 216:697–698

    Article  CAS  PubMed  Google Scholar 

  • Haigh M, Scott JE (1986) A method of processing tissue sections for staining with Cu-promeronic blue and other dyes, using CEC techniques, for light and electron microscopy. Basic Appl Histochem 30:479–486

    CAS  PubMed  Google Scholar 

  • Hammel I, Lagunoff D, Bauza M, Chi E (1983) Periodic, multimodal distribution of granule volumes in mast cells. Cell Tissue Res 228:51–59

    Article  CAS  PubMed  Google Scholar 

  • Hammel I, Dvorak AM, Galli SJ (1987) Defective cytoplasmic granule formation. I. Abnormalities affecting tissue mast cells and pancreatic acinar cells of beige mice. Lab Invest 56:321–328

    CAS  PubMed  Google Scholar 

  • Hammel I, Elmalek M, Castel M, Kalina M (1989) Variability in gold bead density in cells. Quantitative immunocytochemistry. Histochemistry 91:527–530

    Article  CAS  PubMed  Google Scholar 

  • Hammel I, Arizono N, Galli SJ (1991) Mast cells in rat dermis and jejunal lamina propria show a five-fold difference in unit granule volume. Cell Tissue Res 265:329–334

    Article  CAS  PubMed  Google Scholar 

  • Hammel I, Dvorak AM, Fox P, Shimoni E, Galli SJ (1998) Defective cytoplasmic granule formation. II. Differences in patterns of radiolabeling of secretory granules in beige versus normal mouse pancreatic acinar cells after [3H] glycine administration in vivo. Cell Tissue Res 293:445–452

    Article  CAS  PubMed  Google Scholar 

  • Horisberger M, Rosset J, Bauer H (1975) Colloidal gold granules as markers for cell surface receptors in the scanning electron microscope. Experientia 31:1147–1149

    Article  CAS  PubMed  Google Scholar 

  • Hunziker EB, Herrmann W, Schenk RK (1983) Ruthenium hexamine trichloride (RHT)-mediated interaction between plasmalemmal components and pericellular matrix proteoglycans is responsible for the preservation of chondrocytic plasma membranes in situ during cartilage fixation. J Histochem Cytochem 31:717–727

    CAS  PubMed  Google Scholar 

  • Jones CJ, Mosley SM, Jeffrey IJ, Stoddart RW (1987) Elimination of the non-specific binding of avidin to tissue sections. Histochem J 19:264–268

    Article  CAS  PubMed  Google Scholar 

  • Juarranz A, Ferrer JM, Tato A, Cañete M, Stockert JC (1987) Metachromatic staining and electron dense reaction of glycosaminoglycans by means of cuprolinic blue. Histochem J 19:1–6

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137a

    Google Scholar 

  • Kashio N, Tsuyama S, Ihida K, Murata F (1992) Cationic colloidal gold—a probe for light- and electron-microscopic characterization of acidic glycoconjugates using poly–lysine gold complex. Histochem J 24:419–430

    Article  CAS  PubMed  Google Scholar 

  • Kasper CS, Tharp MD (1987) Quantification of cutaneous mast cells using morphometric point counting and a conjugated avidin stain. J Am Acad Dermatol 16:326–331

    Article  CAS  PubMed  Google Scholar 

  • Lagunoff D (1972a) Contributions of electron microscopy to the study of mast cells. J Invest Dermatol 58:296–311

    Article  CAS  PubMed  Google Scholar 

  • Lagunoff D (1972b) Vital staining of mast cells with ruthenium red. J Histochem Cytochem 20:938–944

    CAS  PubMed  Google Scholar 

  • Lawrenson JG, Reid AR, Allt G (1994) Molecular characterization of anionic sites on the luminal front of endoneural capillaries in sciatic nerve. J Neurocytol 23:29–37

    Article  CAS  PubMed  Google Scholar 

  • Lew S, Hammel I, Galli SJ (1994) Cytoplasmic granule formation in mouse pancreatic acinar cells. Evidence for formation of immature granules (condensing vacuoles) by aggregation and fusion of progranules of unit size, and for reductions in membrane surface area and immature granule volume during granule maturation. Cell Tissue Res 278:327–336

    Article  CAS  PubMed  Google Scholar 

  • Luft JH (1971) Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec 171:347–368

    Article  CAS  PubMed  Google Scholar 

  • MacBride RG (1998) Potential use of embalmed cadavers to study mast cell presence. Anat Rec 250:117–120

    Article  CAS  PubMed  Google Scholar 

  • Markey AC, Churchill LJ, MacDonald DM (1989) Human cutaneous mast cells—a study of fixative and staining reactions in normal skin. Br J Dermatol 120:625–631

    Article  CAS  PubMed  Google Scholar 

  • Mayer F, Rohde M (1988) Analysis of dimensions and structural organization of proteoliposomes. Methods Bacteriol 20:283–292

    CAS  Google Scholar 

  • Morris RE, Saelinger CB (1986) Problems in the production and use of 5 nm avidin-gold colloids. J Microsc 143:171–176

    CAS  PubMed  Google Scholar 

  • Orkin RW, Williams BR, Cranley RE, Poppke DC, Brown KS (1977) Defects in the cartilaginous growth plates of brachymorphic mice. J Cell Biol 73:287–299

    Article  CAS  PubMed  Google Scholar 

  • Parkening TA, Pal D (1995) GnRH receptor site increase on the surface of cultured gonadotropes of senescent C57BL/6NNia mice. J Gerontol A Biol Sci Med Sci 50:B342–B350

    CAS  PubMed  Google Scholar 

  • Pennypacker JP, Kimata K, Brown KS (1981) Brachymorphic mice (bm/bm): a generalized biochemical defect expressed primarily cartilage. Dev Biol 81:280–287

    Article  CAS  PubMed  Google Scholar 

  • Reggio HA, Palade GE (1978) Sulfated compounds in the zymogen granules of the guinea pig pancreas. J Cell Biol 77:288–314

    Article  CAS  PubMed  Google Scholar 

  • Röhlich P, Csaba G (1972) Alcian blue-safranine staining and ultrastructure of rat mast cell granules during degranulation. Acta Biol Acad Sci Hung 23:83–89

    PubMed  Google Scholar 

  • Rosenberg HF (2008) RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol 83:1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Roth J (1984) Light and electron microscopic localization of antigens with protein A-gold (pAg) technique. In: DeLellis RA (ed) Diagnostic immunochemistry, vol 2. Masson, New York, pp 43–65

    Google Scholar 

  • Roth J, Binder M (1978) Colloidal gold, ferritin and peroxidase as markers for electron microscopic double labeling lectin techniques. J Histochem Cytochem 26:163–169

    CAS  PubMed  Google Scholar 

  • Ruggeri A, Dell'orbo C, Quacci D (1975) Electron microscopic visualization of proteoglycans with Alcian blue. Histochem J 7:187–197

    Article  CAS  PubMed  Google Scholar 

  • Saga K, Takahashi M (1993) Demonstration of anionic sites in human eccrine and apocrine sweat glands in post-embedded ultra-thin sections with cationic colloidal gold: effect of enzyme digestion on these anionic sites. J Histochem Cytochem 41:1197–1207

    CAS  PubMed  Google Scholar 

  • Schwartz NB, Domowicz M (2002) Chondrodysplasias due to proteoglycan defects. Glycobiology 12:57R–68R

    Article  CAS  PubMed  Google Scholar 

  • Schwartz NB, Ostrowski V, Brown KS, Pratt RM (1978) Defective PAPS-synthesis in epiphyseal cartilage from brachymorphic mice. Biochem Biophys Res Commun 82:173–178

    Article  CAS  PubMed  Google Scholar 

  • Schwartz NB, Lyle S, Ozeran JD, Li H, Deyrup A, Ng K, Westley J (1998) Sulfate activation and transport in mammals: system components and mechanisms. Chem Biol Interact 109:143–151

    Article  CAS  PubMed  Google Scholar 

  • Scott JE (1996) Alcian blue. Now you see it, now you don't. Eur J Oral Sci 104:2–9

    Article  CAS  PubMed  Google Scholar 

  • Shoichetman T, Skutelsky E, Lew S, Hammel I (2001) Changes in the distribution of anionic constituents in secretory granules of mouse pancreatic acinar cells after pilocarpine-induced degranulation. J Histochem Cytochem 49:1199–1204

    CAS  PubMed  Google Scholar 

  • Skutelsky E, Bayer EA (1979) The ultrastructural localization of cell surface glycoconjugates: affinity cytochemistry via avidin-biotin complex. Biol Cell 36:237–252

    CAS  Google Scholar 

  • Skutelsky E, Danon D (1975) Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. J Cell Biol 71:232

    Article  Google Scholar 

  • Skutelsky E, Hardy B (1976) Regeneration of plasmalemma and surface properties in macrophages. Exp Cell Res 101:337

    Article  CAS  PubMed  Google Scholar 

  • Skutelsky E, Roth J (1986) Cationic colloidal gold—a new probe for the detection of anionic cell surface sites by electron microscopy. J Histochem Cytochem 34:693–696

    CAS  PubMed  Google Scholar 

  • Skutelsky E, Goyal V, Alroy J (1987) The use of avidin-gold complex for light microscopic localization of lectin receptors. Histochemistry 86:291–295

    Article  CAS  PubMed  Google Scholar 

  • Skutelsky E, Bar-Shira B, Maymon R, Shalgi R (1992) Histochemical characterization of anionic constituents in oocyte-cumulus complex of rats. Histochemistry 98:299–304

    Article  CAS  PubMed  Google Scholar 

  • Skutelsky E, Shoichetman T, Hammel I (1995) An histochemical approach to characterization of anionic constituents in mast cell secretory granules. Histochem Cell Biol 104:453–458

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York

    Google Scholar 

  • Spicer SS, Horn RG, Leppi TJ (1967) Histochemistry of connective tissue mucopolysaccharides. In: Wanger BM, Smith DE (eds) The connective tissue. Williams and Wilkins, Baltimore, pp 251–303

    Google Scholar 

  • Tato A, Ferrer JM, Quintana E, Romero JB, Del Castillo P, Stockert JC (1990) Observations on the contrasting reaction of some electron dense stains applied on epoxy-embedded tissue sections. Z Mikrosk Anat Forsch 104:337–348

    CAS  PubMed  Google Scholar 

  • Tharp MD, Seelig LL Jr, Tigelaar RE, Bergstresser PR (1985) Conjugated avidin binds to mast cell granules. J Histochem Cytochem 33:27–32

    CAS  PubMed  Google Scholar 

  • Thiéry JP, Ovtracht L (1979) Differential characterization of carboxyl and sulfate groups in thin sections for electron microscopy. Biol Cell 36:281–288

    Google Scholar 

  • Ueda H, Kato Y, Ohno S (1998) Quantitative detection of anionic sites in rat femoral cartilage using cationic colloidal gold at low pH levels. Histol Histopathol 13:1001–1009

    CAS  PubMed  Google Scholar 

  • ul Haque MF, King LM, Krakow D, Cantor RM, Rusiniak ME, Swank RT, Superti-Furga A, Haque S, Abbas H, Ahmad W, Ahmad M, Cohn DH (1998) Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat Genet 20:157–162

    Article  PubMed  Google Scholar 

  • Vanky P, Brockstedt U, Nurminen M, Wikström B, Hjerpe A (2000) Growth parameters in the epiphyseal cartilage of brachymorphic (bm/bm) mice. Calcif Tissue Int 66:355–362

    Article  CAS  PubMed  Google Scholar 

  • Vorbordt AW (1989) Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J Neurocytol 18:359–368

    Article  Google Scholar 

  • Winograd E, Sherman IW (1989) Characterization of a modified red cell membrane protein expressed on erythrocytes infected with the human malaria parasite Plasmodium falciparum: possible role as a cytoadherent mediating protein. J Cell Biol 108:23–30

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Shimizu S, Brown KS, Kimata K (1984) The histochemistry of complex carbohydrates in certain organs of homozygous brachymorphic (bm/bm) mice. Histochem J 16:587–599

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilan Hammel or Ehud Skutelsky.

Additional information

This research was supported by United States Public Health Service grants (to S.J.G.) AI23990, AI070813, and CA72074.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammel, I., Shoichetman, T., Amihai, D. et al. Localization of anionic constituents in mast cell granules of brachymorphic (bm/bm) mice by using avidin-conjugated colloidal gold. Cell Tissue Res 339, 561–570 (2010). https://doi.org/10.1007/s00441-009-0919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0919-2

Keywords

Navigation