Skip to main content

Advertisement

Log in

Morphological alterations in retinal neurons in the S334ter-line3 transgenic rat

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The S334ter-line-3 rat is a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa (RP) patients. Previous studies have focused on physiological changes in retinal cells and higher centers of the visual system with this model of retinal degeneration. However, little is known about the morphological changes in retinal cells during the development of the S334ter-line-3 rat. In order to understand and aid vision-rescue strategies, our aim has been to describe the retinal degeneration pattern in this model. We focus on changes in the morphologies of horizontal, bipolar, and amacrine cells in developing S334ter-line-3 rat retinas. Degeneration of photoreceptors begins in the central retina and progresses toward the periphery. In retinas at post-natal day 15 (P15), horizontal and rod bipolar cells show normal morphology. However, at P21, horizontal and rod bipolar cells exhibit abnormal processes at the outer plexiform layer, whereas the outer nuclear layer is significantly thinner. A glial reaction occurs concomitantly. In contrast, modifications in cone-bipolar and amacrine cells are much slower and do not occur until P90 and P180, respectively. The density of horizontal and rod-bipolar cells significantly drops after P60. Overall, the S334ter-line-3 model exhibits the hallmarks of cellular remodeling caused by photoreceptor degeneration. Its moderately fast time course makes the S334ter-line-3 a good model for studying vision-rescue strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Auricchio A, Rolling F (2005) Adeno-associated viral vectors for retinal gene transfer and treatment of retinal diseases. Curr Gene Ther 5:339–348

    Article  CAS  PubMed  Google Scholar 

  • Baker GE, Dovey M, Davda P, Guibal C, Jeffery G (2005) Protein kinase C immunoreactivity in the pigmented and albino rat retina. Eur J Neurosci 22:2481–2488

    Article  PubMed  Google Scholar 

  • Barhoum R, Martinez-Navarrete G, Corrochano S, Germain F, Fernandez-Sanchez L, Rosa EJ de la, Villa P de la, Cuenca N (2008) Functional and structural modifications during retinal degeneration in the rd10 mouse. Neuroscience 155:698–713

    Article  CAS  PubMed  Google Scholar 

  • Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33

    Article  CAS  PubMed  Google Scholar 

  • Bird AC (1995) Retinal photoreceptor dystrophies LI. Edward Jackson Memorial Lecture. Am J Ophthalmol 119:543–562

    CAS  PubMed  Google Scholar 

  • Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97:357–365

    CAS  PubMed  Google Scholar 

  • Caspi A, Dorn JD, McClure KH, Humayun MS, Greenberg RJ, McMahon MJ (2009) Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Arch Ophthalmol 127:398–401

    Article  PubMed  Google Scholar 

  • Chader GJ (2002) Animal models in research on retinal degenerations: past progress and future hope. Vision Res 42:393–399

    Article  PubMed  Google Scholar 

  • Chan LH, Ray A, Thomas BB, Humayun MS, Weiland JD (2008) In vivo study of response threshold in retinal degenerate model at different degenerate stages. Conf Proc IEEE Eng Med Biol Soc 1:1781–1784

    Google Scholar 

  • Colley NJ, Cassill JA, Baker EK, Zuker CS (1995) Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci USA 92:3070–3074

    Article  CAS  PubMed  Google Scholar 

  • Cuenca N, Pinilla I, Sauvé Y, Lu B, Wang S, Lund RD (2004) Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience 127:301–317

    Article  CAS  PubMed  Google Scholar 

  • Cuenca N, Pinilla I, Sauvé Y, Lund R (2005) Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats. Eur J Neurosci 22:1057–1072

    Article  PubMed  Google Scholar 

  • Das AM, Zhao X, Ahmad I (2005) Stem cell therapy for retinal degeneration: retinal neurons from heterologous sources. Semin Ophthalmol 20:3–10

    Article  PubMed  Google Scholar 

  • D'Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651

    Article  PubMed  Google Scholar 

  • DeMarco PJ Jr, Yarbrough GL, Yee CW, McLean GY, Sagdullaev BT, Ball SL, McCall MA (2007) Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. Invest Ophthalmol Vis Sci 48:916–926

    Article  PubMed  Google Scholar 

  • DiLoreto DA Jr, Martzen MR, Cerro C del, Coleman PD, Cerro M del (1995) Müller cell changes precede photoreceptor cell degeneration in the age-related retinal degeneration of the Fischer 344 rat. Brain Res 698:1–14

    Article  CAS  PubMed  Google Scholar 

  • Fujikado T, Morimoto T, Kanda H, Kusaka S, Nakauchi K, Ozawa M, Matsushita K, Sakaguchi H, Ikuno Y, Kamei M, Tano Y (2007) Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 245:1411–1419

    Article  PubMed  Google Scholar 

  • Gargini C, Terzibasi E, Mazzoni F, Strettoi E (2007) Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol 500:222–238

    Article  PubMed  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  CAS  PubMed  Google Scholar 

  • Haverkamp S, Wässle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Article  CAS  PubMed  Google Scholar 

  • Horsager A, Greenwald SH, Weiland JD, Humayun MS, Greenberg RJ, McMahon MJ, Boynton GM, Fine I (2009) Predicting visual sensitivity in retinal prosthesis patients. Invest Ophthalmol Vis Sci 50:1483–1491

    Article  PubMed  Google Scholar 

  • Horsburgh GM, Sefton AJ (1987) Cellular degeneration and synaptogenesis in the developing retina of the rat. J Comp Neurol 263:553–566

    Article  CAS  PubMed  Google Scholar 

  • Jensen RJ, Rizzo JF 3rd (2008) Activation of retinal ganglion cells in wild-type and rd1 mice through electrical stimulation of the retinal neural network. Vision Res 48:1562–1568

    Article  PubMed  Google Scholar 

  • Jones BW, Marc RE (2005) Retinal remodeling during retinal degeneration. Exp Eye Res 81:123–137

    Article  CAS  PubMed  Google Scholar 

  • Jones BW, Watt CB, Frederick JM, Baehr W, Chen CK, Levine EM, Milam AH, Lavail MM, Marc RE (2003) Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 464:1–16

    Article  PubMed  Google Scholar 

  • Klassen H, Sakaguchi DS, Young MJ (2004) Stem cells and retinal repair. Prog Retin Eye Res 23:149–181

    Article  CAS  PubMed  Google Scholar 

  • Kolb H, Gouras P (1974) Electron microscopic observations of human retinitis pigmentosa, dominantly inherited. Invest Ophthalmol 13:487–498

    CAS  PubMed  Google Scholar 

  • LaVail MM (1981) Analysis of neurological mutants with inherited retinal degeneration. Friedenwald lecture. Invest Ophthalmol Vis Sci 21:638–657

    CAS  PubMed  Google Scholar 

  • LaVail MM, Matthes MT, Yasumura D, Steinberg RH (1997) Variability in rate of cone degeneration in the retinal degeneration (rd/rd) mouse. Exp Eye Res 65:45–50

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Kim HJ, Lim EJ, Kim IB, Kang WS, Oh SJ, Rickman DW, Chung JW, Chun MH (2004) AII amacrine cells in the mammalian retina show disabled-1 immunoreactivity. J Comp Neurol 470:372–381

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Possin DE, Milam AH (1995) Histopathology of bone spicule pigmentation in retinitis pigmentosa. Ophthalmology 102:805–816

    CAS  PubMed  Google Scholar 

  • Liu C, Li Y, Peng M, Laties AM, Wen R (1999) Activation of caspase-3 in the retina of transgenic rats with the rhodopsin mutation s334ter during photoreceptor degeneration. J Neurosci 19:4778–4785

    CAS  PubMed  Google Scholar 

  • Machida S, Kondo M, Jamison JA, Khan NW, Kononen LT, Sugawara T, Bush RA, Sieving PA (2000) P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci 41:3200–3209

    CAS  PubMed  Google Scholar 

  • Marc RE, Jones BW (2003) Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol 28:139–147

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Jones BW, Anderson JR, Kinard K, Marshak DW, Wilson JH, Wensel T, Lucas RJ (2007) Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci 48:3364–3371

    Article  PubMed  Google Scholar 

  • Margolis DJ, Newkirk G, Euler T, Detwiler PB (2008) Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J Neurosci 28:6526–6536

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni F, Novelli E, Strettoi E (2008) Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 28:14282–14292

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin ME, Sandberg MA, Berson EL, Dryja TP (1993) Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet 4:130–134

    Article  CAS  PubMed  Google Scholar 

  • Milam AH, Dacey DM, Dizhoor AM (1993) Recoverin immunoreactivity in mammalian cone bipolar cells. Vis Neurosci 10:1–12

    Article  CAS  PubMed  Google Scholar 

  • Milam AH, Li ZY, Fariss RN (1998) Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 17:175–205

    Article  CAS  PubMed  Google Scholar 

  • Nour M, Naash MI (2003) Mouse models of human retinal disease caused by expression of mutant rhodopsin. A valuable tool for the assessment of novel gene therapies. Adv Exp Med Biol 533:173–179

    CAS  PubMed  Google Scholar 

  • O'Steen WK, Anderson KV (1972) Photoreceptor degeneration after exposure of rats to incandescent illumination. Z Zellforsch Mikrosk Anat 127:306–313

    Article  PubMed  Google Scholar 

  • O'Steen WK, Anderson KV, Shear CR (1974) Photoreceptor degeneration in albino rats: dependency on age. Invest Ophthalmol 13:334–339

    PubMed  Google Scholar 

  • Peichl L, González-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 11:501–517

    Article  CAS  PubMed  Google Scholar 

  • Peng YW, Hao Y, Petters RM, Wong F (2000) Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nat Neurosci 3:1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Peng YW, Senda T, Hao Y, Matsuno K, Wong F (2003) Ectopic synaptogenesis during retinal degeneration in the Royal College of Surgeons rat. Neuroscience 119:813–820

    Article  CAS  PubMed  Google Scholar 

  • Reese BE, Raven MA, Stagg SB (2005) Afferents and homotypic neighbors regulate horizontal cell morphology, connectivity, and retinal coverage. J Neurosci 25:2167–2175

    Article  CAS  PubMed  Google Scholar 

  • Roque RS, Caldwell RB (1990) Müller cell changes precede vascularization of the pigment epithelium in the dystrophic rat retina. Glia 3:464–475

    Article  CAS  PubMed  Google Scholar 

  • Sagdullaev BT, Aramant RB, Seiler MJ, Woch G, McCall MA (2003) Retinal transplantation-induced recovery of retinotectal visual function in a rodent model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 44:1686–1695

    Article  PubMed  Google Scholar 

  • Stasheff SF (2008) Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol 99:1408–1421

    Article  PubMed  Google Scholar 

  • Strettoi E, Porciatti V, Falsini B, Pignatelli V, Rossi C (2002) Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci 22:5492–5504

    CAS  PubMed  Google Scholar 

  • Strettoi E, Pignatelli V, Rossi C, Porciatti V, Falsini B (2003) Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res 43:867–877

    Article  PubMed  Google Scholar 

  • Strettoi E, Mears AJ, Swaroop A (2004) Recruitment of the rod pathway by cones in the absence of rods. J Neurosci 24:7576–7582

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Humayun MS, Weiland JD, Chen SJ, Margalit E, Piyathaisere DV, Juan E de Jr (2004) Comparison of electrical stimulation thresholds in normal and retinal degenerated mouse retina. Jpn J Ophthalmol 48:345–349

    PubMed  Google Scholar 

  • Tanihara H, Hangai M, Sawaguchi S, Abe H, Kageyama M, Nakazawa F, Shirasawa E, Honda Y (1997) Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with experimental glaucoma. Arch Ophthalmol 115:752–756

    CAS  PubMed  Google Scholar 

  • Thomas BB, Aramant RB, Sadda SR, Seiler MJ (2006a) Retinal transplantation. A treatment strategy for retinal degenerative diseases. Adv Exp Med Biol 572:367–376

    Article  PubMed  Google Scholar 

  • Thomas BB, Arai S, Ikai Y, Qiu G, Chen Z, Aramant RB, Sadda SR, Seiler MJ (2006b) Retinal transplants evaluated by optical coherence tomography in photoreceptor degenerate rats. J Neurosci Methods 151:186–193

    Article  PubMed  Google Scholar 

  • Vardi N, Auerbach P (1995) Specific cell types in cat retina express different forms of glutamic acid decarboxylase. J Comp Neurol 351:374–384

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Lu B, Lund RD (2005) Morphological changes in the Royal College of Surgeons rat retina during photoreceptor degeneration and after cell-based therapy. J Comp Neurol 491:400–417

    Article  PubMed  Google Scholar 

  • Wang S, Lu B, Girman S, Holmes T, Bischoff N, Lund RD (2008) Morphological and functional rescue in RCS rats after RPE cell line transplantation at a later stage of degeneration. Invest Ophthalmol Vis Sci 49:416–421

    Article  PubMed  Google Scholar 

  • Weiland JD, Liu W, Humayun MS (2005) Retinal prosthesis. Annu Rev Biomed Eng 7:361–401

    Article  CAS  PubMed  Google Scholar 

  • Zrenner E (2002) The subretinal implant: can microphotodiode arrays replace degenerated retinal photoreceptors to restore vision? Ophthalmologica 216 (Suppl 1):8–20

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mathew LaVail for providing the transgenic homozygous animals. We also thank Xiwu Cao and Jun-Kwan Lee for their comments and Denise Steiner for administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Jin Lee.

Additional information

This work was supported by a Women in Science and Engineering Research Grant and a James H. Zumberge Research Grant to E.-J.L., National Eye Institute Grants EY08921 and EY11170 to N.M.G., and National Eye Institute Grant EY03040 and National Science Foundation Grant EEC 0310723 to J.D.W., D.R.H., and M.S.H.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, A., Sun, G.J., Chan, L. et al. Morphological alterations in retinal neurons in the S334ter-line3 transgenic rat. Cell Tissue Res 339, 481–491 (2010). https://doi.org/10.1007/s00441-009-0916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0916-5

Keywords

Navigation