Skip to main content
Log in

Synaptic connections of calbindin-immunoreactive cone bipolar cells in the inner plexiform layer of rabbit retina

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In the mammalian retina, information concerning various aspects of an image is transferred in parallel, and cone bipolar cells are thought to play a major role in this parallel processing. We have examined the synaptic connections of calbindin-immunoreactive (IR) ON cone bipolar cells in the inner plexiform layer (IPL) of rabbit retina and have compared these synaptic connections with those that we have previously described for neurokinin 1 (NK1) receptor-IR cone bipolar cells. A total of 325 synapses made by calbindin-IR bipolar axon terminals have been identified in sublamina b of the IPL. The axons of calbindin-IR bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and are coupled to putative AII amacrine cells via gap junctions. The major output from calbindin-IR bipolar cells is to amacrine cell processes. These data resemble our findings for NK1 receptor-IR bipolar cells. However, the incidences of output synapses to ganglion cell dendrites of calbindin-IR bipolar cells are higher compared with the NK1-receptor-IR bipolar cells. On the basis of stratification level and synaptic connections, calbindin-IR ON cone bipolar cells might thus play an important role in the processing of various visual aspects, such as contrast, orientation, and approach sensing, and in transferring rod signals to the ON cone pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amthor FR, Takahashi ES, Oyster CW (1989) Morphologies of rabbit retinal ganglion cells with complex receptive fields. J Comp Neurol 280:97–121

    Article  CAS  PubMed  Google Scholar 

  • Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314–320

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield SA, Dacheux RF (2001) Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20:351–384

    Article  CAS  Google Scholar 

  • Boycott B, Wässle H (1999) Parallel processing in the mammalian retina. Invest Ophthalmol Vis Sci 40:1313–1327

    CAS  PubMed  Google Scholar 

  • Brandon C (1987) Cholinergic neurons in the rabbit retina: immunocytochemical localization, and relationship to GABAergic and cholinesterase-containing neurons. Brain Res 401:385–391

    Article  CAS  PubMed  Google Scholar 

  • Brown SP, Masland RH (1999) Costratification of a population of bipolar cells with the direction-selective circuitry of the rabbit retina. J Comp Neurol 408:97–106

    Article  CAS  PubMed  Google Scholar 

  • Caldwell JH, Daw NW, Wyatt HJ (1978) Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol (Lond) 276:277–298

    CAS  Google Scholar 

  • Casini G, Sabatini A, Catalani E, Willems D, Bosco L, Brecha NC (2002) Expression of the neurokinin 1 receptor in the rabbit retina. Neuroscience 115:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Chun M-H, Han S-H, Chung J-W, Wässle H (1993) Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol 332:421–432

    Article  CAS  PubMed  Google Scholar 

  • Chun M-H, Kim I-B, Oh S-J, Chung J-W (1999) Synaptic connectivity of two types of recoverin-labeled cone bipolar cells and glutamic acid decarboxylase immunoreactive amacrine cells in the inner plexiform layer of the rat retina. Vis Neurosci 16:791–800

    CAS  PubMed  Google Scholar 

  • Cleland BG, Levick WR (1974) Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J Physiol (Lond) 240:421–456

    CAS  Google Scholar 

  • Dubin MW (1970) The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis. J Comp Neurol 140:479–506

    Article  CAS  PubMed  Google Scholar 

  • Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol (Lond) 187:517–552

    CAS  Google Scholar 

  • Euler T, Wässle H (1995) Immunocytochemical identification of cone bipolar cells in the rat retina. J Comp Neurol 361:461–478

    Article  CAS  PubMed  Google Scholar 

  • Famiglietti EV, Kolb H (1975) A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res 84:293–300

    Article  PubMed  Google Scholar 

  • Famiglietti EV, Kolb H (1976) Structural basis for ON- and OFF-center responses in retinal ganglion cells. Science 194:193–195

    Article  PubMed  Google Scholar 

  • Famiglietti EV, Tumosa N (1987) Immunocytochemical staining of cholinergic amacrine cells in rabbit retina. Brain Res 413:398–403

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Liao HW, Do MT, Yau KW (2005) Non-image-forming ocular photoreception in vertebrates. Curr Opin Neurobiol 15:415–422

    Article  CAS  PubMed  Google Scholar 

  • Greferath U, Grünert U, Wässle H (1990) Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 301:433–442

    Article  CAS  PubMed  Google Scholar 

  • Hartveit E (1997) Functional organization of cone bipolar cells in the rat retina. J Neurophysiol 4:1716–1730

    Google Scholar 

  • Hoshi H, Mills SL (2009) Components and properties of the G3 ganglion cell circuit in the rabbit retina. J Comp Neurol 513:69–82

    Article  PubMed  Google Scholar 

  • Hoshi H, Liu W-L, Massey SC, Mills SL (2009) ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J Neurosci 29:8875–8883

    Article  CAS  PubMed  Google Scholar 

  • Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA 83:2755–2757

    Article  CAS  PubMed  Google Scholar 

  • Kim I-B, Lee M-Y, Oh S-J, Kim K-Y, Chun M-H (1998) Double-labeling techniques demonstrate that rod bipolar cells are under GABAergic control in the inner plexiform layer of the rat retina. Cell Tissue Res 292:17–25

    Article  CAS  PubMed  Google Scholar 

  • Kim I-B, Lee E-J, Kim M-K, Park D-K, Chun M-H (2000) Choline acetyltransferase-immunoreactive neurons in the developing rat retina. J Comp Neurol 427:604–616

    Article  CAS  PubMed  Google Scholar 

  • Kim I-B, Lee E-J, Kang T-H, Chung J-W, Chun M-H (2003) Morphological analysis of the hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) immunoreactive bipolar cells in the rabbit retina. J Comp Neurol 467:389–402

    Article  CAS  PubMed  Google Scholar 

  • Kim I-B, Park MR, Kang T-H, Kim H-J, Lee E-J, Ahn M-D, Chun M-H (2005) Synaptic connections of cone bipolar cells that express the neurokinin 1 receptor in the rabbit retina. Cell Tissue Res 321:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kim IJ, Zhang Y, Yamagata M, Meister M, Sanes JR (2008) Molecular identification of a retinal cell type that responds to upward motion. Nature 452:478–482

    Article  CAS  PubMed  Google Scholar 

  • Kolb H (1979) The inner plexiform layer in the retina of the cat: electron microscopic observations. J Neurocytol 8:295–329

    Article  CAS  PubMed  Google Scholar 

  • Kolb H, Famiglietti EV (1974) Rod and cone pathways in the inner plexiform layer of the cat retina. Science 186:47–49

    Article  CAS  PubMed  Google Scholar 

  • Levick WR (1967) Receptive fields and trigger features of ganglion cells in the visual streak of the rabbits retina. J Physiol (Lond) 188:285–307

    CAS  Google Scholar 

  • MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implication for function. Neuron 20:971–982

    Article  CAS  PubMed  Google Scholar 

  • MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH (1999) The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J Comp Neurol 413:305–326

    Article  CAS  PubMed  Google Scholar 

  • MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH (2004) The population of bipolar cells in the rabbit retina. J Comp Neurol 472:73–86

    Article  PubMed  Google Scholar 

  • Manookin MB, Beaudoin DL, Ernst ZR, Flagel LJ, Demb JB (2008) Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci 28:4136–4150

    Article  CAS  PubMed  Google Scholar 

  • Masland RH (1988) Amacrine cells. Trends Neurosci 11:405–410

    Article  CAS  PubMed  Google Scholar 

  • Massey SC, Mills SL (1996) A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J Comp Neurol 366:15–33

    Article  CAS  PubMed  Google Scholar 

  • McGillem GS, Dacheux RF (2001) Rabbit cone bipolar cells: correlation of their morphologies with whole-cell recordings. Vis Neurosci 18:675–685

    Article  CAS  PubMed  Google Scholar 

  • McGuire BA, Stevens JK, Sterling P (1984) Microcircuitry of bipolar cells in cat retina. J Neurosci 4:2920–2938

    CAS  PubMed  Google Scholar 

  • McGuire BA, Stevens JK, Sterling P (1986) Microcircuitry of beta ganglion cells in cat retina. J Neurosci 6:907–918

    CAS  PubMed  Google Scholar 

  • Merighi A, Raviola E, Dacheux RF (1996) Connections of two types of flat cone bipolar in the rabbit retina. J Comp Neurol 371:164–178

    Article  CAS  PubMed  Google Scholar 

  • Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B (2009) Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 12:1308–1316

    Article  PubMed  Google Scholar 

  • Negishi K, Kato S, Teranishi T (1988) Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neurosci Lett 94:247–252

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Kolb H (1983) Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res 23:1183–1195

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Famiglietti EV, Kolb H (1978) Intracellular staining reveals different levels of stratification for ON-center and OFF-center ganglion cells in the cat retina. J Neurophysiol 4:427–483

    Google Scholar 

  • Peichl L, Wässle H (1981) Morphological identification of ON- and OFF-centre brisk transient (Y) cells in the cat retina. Proc R Soc Lond [Biol] 212:139–153

    Article  CAS  Google Scholar 

  • Sandell JH, Masland RH (1986) A system of indoleamine-accumulating neurons in the rabbit retina. J Neurosci 6:3331–3347

    CAS  PubMed  Google Scholar 

  • Sterling P (2004) How retinal circuits optimize the transfer of visual inforamtion. In: Chalupa LM, Werner JS (eds) The visual neurosciences, vol 1. MIT Press, Hong Kong, pp 234–259

    Google Scholar 

  • Sterling P, Freed MA, Smith RG (1988) Architecture and rod and cone circuits of the on-beta ganglion cell. J Neurosci 8:623–642

    CAS  PubMed  Google Scholar 

  • Sterling P, Smith RG, Rao R, Vardi N (1995) Functional architecture of mammalian outer retina and bipolar cells. In: Archer S, Djamgoz MBA, Vallerga S (eds) Neurobiology and clinical aspects of the outer retina. Chapman & Hall, London, pp 325–348

    Google Scholar 

  • Strettoi E, Masland RH (1996) The number of unidentified amacrine cells in the mammalian retina. Proc Natl Acad Sci USA 93:14906–14911

    Article  CAS  PubMed  Google Scholar 

  • Strettoi E, Raviola E, Dacheux RF (1992) Synaptic connections of the narrow-field bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol 325:152–168

    Article  CAS  PubMed  Google Scholar 

  • Strettoi E, Dacheux RF, Raviola E (1994) Cone bipolar cells as interneurons in the rod pathway of the rabbit retina. J Comp Neurol 347:139–149

    Article  CAS  PubMed  Google Scholar 

  • Tauchi M, Masland RH (1984) The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc R Soc Lond [Biol] 223:101–119

    Article  CAS  Google Scholar 

  • Trexler EB, Li W, Mills SL, Massey SC (2001) Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional. J Comp Neurol 437:408–422

    Article  CAS  PubMed  Google Scholar 

  • Trexler EB, Li W, Massey SC (2005) Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses. J Neurophysiol 93:1476–1485

    Article  PubMed  Google Scholar 

  • Vaney DI (1984) “Coronate” amacrine cells in the rabbit retina have the “starburst” dendritic morphology. Proc R Soc Lond [Biol] 220:501–508

    Article  CAS  Google Scholar 

  • Vaney DI (1986) Morphological identification of serotonin-accumulating neurons in the living retina. Science 233:444–446

    Article  CAS  PubMed  Google Scholar 

  • Vaney DI (1990) The mosaic of amacrine cells in the mammalian retina. Prog Retin Res 9:49–100

    Article  CAS  Google Scholar 

  • Vaney DI (1997) Neuronal coupling in rod-signal pathways of the retina. Invest Ophthalmol Vis Sci 38:267–273

    CAS  PubMed  Google Scholar 

  • Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757

    Article  PubMed  Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71:447–480

    PubMed  Google Scholar 

  • Wässle H, Yamashita M, Greferath U, Grünert U, Müller F (1991) The rod bipolar cell of the mammalian retina. Vis Neurosci 7:99–112

    Article  PubMed  Google Scholar 

  • Wässle H, Grünert U, Chun M-H, Boycott BB (1995) The rod pathway of the macaque monkey retina: identification of AII amacrine cells with antibodies against calretinin. J Comp Neurol 361:537–551

    Article  PubMed  Google Scholar 

  • Xin D, Bloomfield SA (1999) Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Vis Neurosci 16:653–665

    Article  CAS  PubMed  Google Scholar 

  • Young HM, Vaney DI (1991) Rod-signal interneurons in the rabbit retina. 1. Rod bipolar cells. J Comp Neurol 310:139–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li W, Trexler EB, Massey SC (2002) Confocal analysis of reciprocal feedback at rod bipolar terminals in the rabbit retina. J Neurosci 22:10871–10882

    CAS  PubMed  Google Scholar 

  • Zhang J, Li W, Hoshi H, Mills SL, Massey SC (2005) Stratification of alpha ganglion cells and ON/OFF directionally selective ganglion cells in the rabbit retina. Vis Neurosci 22:535–549

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In-Beom Kim or Myung-Hoon Chun.

Additional information

Shin Ae Kim and Choong Ki Jung contributed equally to this study.

This study was supported by a Korea Research Foundation Grant (KRF-2007-313-E00007) and a Medical Research Center Grant (R13-2002-005-01002-0) from the Korea Science and Engineering Foundation (KOSEF) through the Cell Death Disease Research Center at The Catholic University of Korea (I.-B.K.) and by a grant (10029970) from the Ministry of Knowledge Economy, Republic of Korea (M.-H.C.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.A., Jung, C.K., Kang, TH. et al. Synaptic connections of calbindin-immunoreactive cone bipolar cells in the inner plexiform layer of rabbit retina. Cell Tissue Res 339, 311–320 (2010). https://doi.org/10.1007/s00441-009-0895-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0895-6

Keywords

Navigation