Skip to main content
Log in

Macroglial cells of the teleost central nervous system: a survey of the main types

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Following our previous review of teleost microglia, we focus here on the morphological and histochemical features of the three principal macroglia types in the teleost central nervous system (ependymal cells, astrocyte-like cells/radial glia and oligodendrocytes). This review is concerned with recent literature and not only provides insights into the various individual aspects of the different types of macroglial cells plus a comparison with mammalian glia, but also indicates the several potentials that the neural tissue of teleosts exhibits in neurobiological research. Indeed, some areas of the teleost brain are particularly suitable in terms of the establishment of a “simple” but complete research model (i.e. the visual pathway complex and the supramedullary neuron cluster in puffer fish). The relationships between neurons and glial cells are considered in fish, with the aim of providing an integrated picture of the complex ways in which neurons and glia communicate and collaborate in normal and injured neural tissues. The recent setting up of successful protocols for fish glia and mixed neuron-glia cultures, together with the molecular facilities offered by the knowledge of some teleost genomes, should allow consistent input towards the achievement of this aim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso JR, Garcia-Ojeda E, Weruaga E, Brinon JG, Arevalo R, Celio MR, Aijòn J (1998) McAB 300 antibody against calbindin D-28 K is a glial marker in the teleosts brain. Arch Ital Biol 136:77–81

    PubMed  CAS  Google Scholar 

  • Angrist M (1998) Less is more: compact genomes pay dividends. Genome Res 8:683–685

    PubMed  CAS  Google Scholar 

  • Ankerhold R, Stuermer CAO (1999) Fate of oligodendrocytes during retinal axon degeneration and regeneration in the goldfish visual pathway. J Neurobiol 41:572–584

    Article  PubMed  CAS  Google Scholar 

  • Ankerhold R, Leppert CA, Bastmeyer M, Stuermer CAO (1998) E587 antigen is upregulated by goldfish oligodendrocytes after optic nerve lesion and supports retinal axon regeneration. Glia 23:257–270

    Article  PubMed  CAS  Google Scholar 

  • Arochena M, Anadòn R, Dìaz-Regueira SM (2004) Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. J Comp Neurol 469:413–436

    Article  PubMed  CAS  Google Scholar 

  • Bastmeyer M, Beckmann M, Nona SM, Cronly-Dillon JR, Stuermer CAO (1989) Identification of astrocyte- and oligodendrocyte-like cells of goldfish optic nerves in culture. Neurosci Lett 101:127–132

    Article  PubMed  CAS  Google Scholar 

  • Bastmeyer M, Beckmann M, Schwab ME, Stuermer CAO (1991) Growth of regenerating goldfish axons is inhibited by rat oligodendrocytes and CNS myelin but not by goldfish optic nerve tract oligodendrocyte-like cells and fish CNS myelin. J Neurosci 11:626–640

    PubMed  CAS  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  PubMed  CAS  Google Scholar 

  • Bignami A, Dahl D (1974) Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol 153:27–38

    Article  PubMed  CAS  Google Scholar 

  • Bodega G, Suàrez I, Fernàndez B (1990) Radial astrocytes and ependymocytes in the spinal cord of the adult toad (Bufo bufo L.). An immunohistochemical and ultrastructural study. Cell Tissue Res 260:307–314

    Article  PubMed  CAS  Google Scholar 

  • Bodega G, Suàrez L, Rubio M, Villalba RM, Fernàndez B (1993) Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anat Embryol 187:385–395

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366:265–268

    Article  PubMed  CAS  Google Scholar 

  • Brösamle C, Halpern ME (2009) Nogo-Nogo receptor signalling in PNS axon outgrowth and pathfinding. Mol Cell Neurosci 40:401–409

    Article  PubMed  CAS  Google Scholar 

  • Cardone B, Roots BI (1990) Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus and snail. Glia 3:180–192

    Article  PubMed  CAS  Google Scholar 

  • Carmignoto G (2000) Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 62:561–581

    Article  PubMed  CAS  Google Scholar 

  • Clemente D, Porteros A, Alonso JR, Weruaga E, Aijon J, Arevalo R (2002) Effects of axotomy on the expression of NADPH-diaphorase in the visual pathway of the tench. Brain Res 925:183–194

    Article  PubMed  CAS  Google Scholar 

  • Clint SC, Zupanc GKH (2001) Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorynchus: guidance of migrating young cells by radial glia. Brain Res Dev 130:15–23

    Article  CAS  Google Scholar 

  • Crnogorac-Jurcevic T, Brown J, Lehrach H, Schalkwyk LC (1997) Tetraodon fluviatilis, a new pufferfish model for genome studies. Genomics 41:177–184

    Article  PubMed  CAS  Google Scholar 

  • Crollius HR (2006) The tetraodon genome. Genome Dyn 2:154–164

    Article  PubMed  CAS  Google Scholar 

  • Crollius HR, Jaillon O, Bernot A, Da Silva C, Bouneau L, Fischer C, et al (2000) Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence. Nat Genet 25:235–238

    Article  CAS  Google Scholar 

  • Cuoghi B (2001) Glial cells: basic components of clusters of supramedullary neurons in pufferfish. J Neurocytol 30:503–513

    Article  PubMed  CAS  Google Scholar 

  • Cuoghi B, Marini M (2001) Ultrastructural and cytochemical features of the supramedullary neurons of the pufferfish Diodon holacanthus (L.) (Osteichthyes). Tissue Cell 33:491–499

    Article  PubMed  CAS  Google Scholar 

  • Cuoghi B, Mola L (2007) Microglia of teleosts: facing a challenge in neurobiology. Eur J Histochem 51:231–240

    PubMed  CAS  Google Scholar 

  • Cuoghi B, Marini M, Mola L (2002) Histochemical and immunocytochemical localization of nitric oxide synthase in the supramedullary neurons of the pufferfish Tetraodon fluviatilis. Brain Res 938:1–6

    Article  PubMed  CAS  Google Scholar 

  • Cuoghi B, Blasiol L, Sabatini MA (2003) ACTH occurrence in teleost supramedullary neuron clusters: a neuron-glial common language? Gen Comp Endocrinol 132:88–95

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Bignami A (1973) Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Res 61:279–293

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Reguer DC, Bignami A, Weber K, Osborn M (1981) Vimentin, the 57,000 molecular weight protein of fibroblast filaments is the major cytoskeletal component in immature glia. Eur J Cell Biol 24:191–196

    PubMed  CAS  Google Scholar 

  • Dahl D, Crosby CJ, Sethi JS, Bignami A (1985) Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J Comp Neurol 239:75–88

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Björklund H, Bignami A (1986) Immunological markers in astrocytes. In: Fedoroff S, Vernadakis A (eds) Astrocytes, vol 3. Academic Press, Orlando, USA, pp 1–25

    Google Scholar 

  • Ehinger B, Zucker CL, Bruun A, Adolph A (1994) In vivo staining of oligodendroglia in the rabbit retina. Glia 10:40–48

    Article  PubMed  CAS  Google Scholar 

  • Eng LF, Vanderhagen VJ, Bignami A, Gerstl B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28:351–354

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556–562

    Article  PubMed  CAS  Google Scholar 

  • Filippi A, Tiso N, Deflorian G, Zecchin E, Bortolussi M, Argenton F (2005) The basic helix–loop–helix olig3 establishes the neural plate boundary of the trunk and is necessary for development of the dorsal spinal cord. Proc Natl Acad Sci USA 102:4377–4382

    Article  PubMed  CAS  Google Scholar 

  • Funakoshi K, Kadota T, Atobe Y, Nakano M, Goris RC, Kishida R (1998) Gastrin/CCK-ergic innervation of cutaneous mucous gland by the supramedullary cells of the puffer fish Takifugu niphobles. Neurosci Lett 258:171–174

    Article  PubMed  CAS  Google Scholar 

  • Gallo V, Ghiani A (2000) Glutamate receptors in glia: new cells, new imputs and new functions. Trends Pharmacol 21:252–258

    Article  CAS  Google Scholar 

  • Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawak K, Scott CE, et al (2002) A physical map of the mouse genome. Nature 418:743–750

    Article  PubMed  CAS  Google Scholar 

  • Hinegardner R, Rosen DE (1972) Cellular DNA content and the evolution of teleostean fishes. Am Nat 196:621–644

    Article  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  CAS  Google Scholar 

  • Jaillon O, Aury J, Brunet F, Petit JL, Stange-Thomann N, Muceli E, et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  • Jeserich G, Klempahn K, Pfeiffer M (2008) Features and functions of oligodendrocytes and myelin proteins of lower vertebrate species. J Mol Neurosci 35:117–126

    Article  PubMed  CAS  Google Scholar 

  • Kalman M (1998) Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunohistochemical staining against glial fibrillary acidic protein (GFAP). Anat Embryol 198:409–433

    Article  PubMed  CAS  Google Scholar 

  • Kalman M (2002) GFAP expression withdraws—a trend of glial evolution? Brain Res Bull 57:509–511

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Ajtai BM (2000) Lesions do not provoke GFAP-expression in the GFAP-immunonegative areas of the teleost brain. Ann Anat 182:459–463

    Article  PubMed  CAS  Google Scholar 

  • Kalman M, Ari C (2002) Distribution of GFAP immunoreactive structure in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication. J Exp Zool 293:395–406

    Article  PubMed  CAS  Google Scholar 

  • Kawai H, Arata N, Nakayasu H (2001) Three-dimensional distribution of astrocytes in zebrafish spinal cord. Glia 36:406–413

    Article  PubMed  CAS  Google Scholar 

  • Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B (2006) In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behaviour during zebrafish development. Nat Neurosci 9:1506–1511

    Article  PubMed  CAS  Google Scholar 

  • Klinger M, Taylor JS, Oertle T, Schwab ME, Stuermer CAO, Diekmann H (2004) Identification of Nogo-66 receptor (NgR) and homologous genes in fish. Mol Biol Evol 21:76–85

    Article  PubMed  CAS  Google Scholar 

  • Kruger L, Maxwell DS (1967) Comparative fine structure of vertebrate neuroglia: teleosts and reptiles. J Comp Neurol 129:115–142

    Article  Google Scholar 

  • Laming PR, Kimelberg H, Robinson S, Salm A, Hawryiak N, Müller C, et al (2000) Neuronal-glia interactions and behaviour. Neurosci Biobehav Rev 24:295–340

    Article  PubMed  CAS  Google Scholar 

  • Lara JM, Alonso JR, Vecino E, Coveña R, Aijón J (1989) Neuroglia in the optic tectum of teleosts. J Hirnforsch 30:465–472

    PubMed  CAS  Google Scholar 

  • Levine RL (1989) Organization of astrocytes in the visual pathways of the goldfish: an immunohistochemical study. J Comp Neurol 285:231–245

    Article  PubMed  CAS  Google Scholar 

  • Lewis KE, Eisen JS (2003) From cells to circuits: development of the zebrafish spinal cord. Prog Neurobiol 69:419–449

    Article  PubMed  CAS  Google Scholar 

  • Lillo C, Velasco A, Jimeno D, Lara JM, Aijon J (1998) Ultrastructural organization of the optic nerve of the tench (Cyprinidae, Teleostei). J Neurocytol 27:593–604

    Article  PubMed  CAS  Google Scholar 

  • Ma PM (1993) Tanycytes in the sunfish brain: NADPH-diaphorase histochemistry and regional distribution. J Comp Neurol 336:77–95

    Article  PubMed  CAS  Google Scholar 

  • Maggs A, Scholes J (1986) Glial domains and nerve fiber patterns in the fish retinotectal pathway. J Neurosci 6:424–438

    PubMed  CAS  Google Scholar 

  • Menuet A, Pellegrini E, Brion F, Gueguen MM, Anglade I, Pakdel F, Kah O (2005) Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. J Comp Neurol 485:304–320

    Article  PubMed  CAS  Google Scholar 

  • Mineff E, Valtschanoff J (1999) Metabotropic glutamate receptors 2 and 3 expressed by astrocytes in rat ventrobasal thalamus. Neurosci Lett 270:13–16

    Article  Google Scholar 

  • Mola L, Cuoghi B (2004) The supramedullary neurons of fish: present status and goals for the future. Brain Res Bull 64:195–204

    Article  PubMed  Google Scholar 

  • Mola L, Sassi D, Cuoghi B (2002) The supramedullary cells of the teleost Coris julis (L.): a noradrenergic neuronal system. Eur J Histochem 46:329–332

    PubMed  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  Google Scholar 

  • Nona SN, Shehab SAS, Stafford CA, Cronly-Dillon JR (1989) Glial fibrillary acidic protein (GFAP) from goldfish: its localization in visual pathway. Glia 2:189–200

    Article  PubMed  CAS  Google Scholar 

  • Onteniente B, Kimura H, Maeda T (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J Comp Neurol 215:427–436

    Article  PubMed  CAS  Google Scholar 

  • Pannese E (1994) Neurocytology. Fine structure of neurons, nerve processes and neuroglial cells. Thieme, Stuttgart

    Google Scholar 

  • Park HC, Appel B (2003) Delta-Notch signaling regulates oligodendrocyte specification. Development 130:3747–3755

    Article  PubMed  CAS  Google Scholar 

  • Park HC, Mehta A, Richardson JS, Appel B (2002) Olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev Biol 248:356–368

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini E, Menuet A, Lethimonier C, Adrio F, Gueguen MM, Tascon C, et al (2005) Relationship between aromatase and estrogen receptors in the brain of teleost fish. Gen Comp Endocrinol 142:60–66

    Article  PubMed  CAS  Google Scholar 

  • Perez SE, Adrio F, Rodriguez MA, Rodriguez-Moldes I, Anadon R (1996) NADPH-diaphorase histochemistry reveals oligodendrocytes in the rainbow trout (teleosts). Neurosci Lett 205:83–86

    Article  PubMed  CAS  Google Scholar 

  • Peuchen S, Bolaños JP, Heales SJR, Almeida A, Duchen MR, Clarck JB (1997) Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 52:261–281

    Article  PubMed  CAS  Google Scholar 

  • Porter JT, McCarty KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1909–1911) Histologie du système nerveux de l’homme et de vertébrés. Maloine, Paris (reprinted 1972, Inst. Ramón y Cajal, CSIC, Madrid)

    Google Scholar 

  • Rasmussen S, Sensenbrenner M, Devilliers G, Schousboe A, Bock E (1981) Isolation of intermediate filaments from rat astrocytes in culture. Neurosci Lett 25:119–124

    Article  PubMed  CAS  Google Scholar 

  • Rat Genome Sequencing Project Consortium (2004) Genome sequence of the brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  CAS  Google Scholar 

  • Roots BI (1986) Phylogenetic development of astrocytes. In: Fedoroff S, Vernadakis A (eds) Astrocytes, vol 1. Academic Press, Orlando, USA, pp 1–34

    Google Scholar 

  • Rubio M, Suarez I, Bodega G, Fernandez B (1992) Glial fibrillary acidic protein and vimentin immunohistochemistry in the posterior rhombencephalon of the Iberian barb (Barbus comiza). Neurosci Lett 134:203–206

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Kästner R, Szymas J (1990) Immunohistochemistry of glial fibrillary acidic protein, vimentin and S-100 protein for study of astrocytes in hippocampus of rat. J Chem Neuroanat 3:179–192

    PubMed  Google Scholar 

  • Schweitzer M, Becker T, Schachner M, Nave KA, Werner H (2006) Evolution of myelin proteolipid proteins: gene duplication in telesosts and expression pattern divergence. Mol Cell Neurosci 31:161–177

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer J, Gimnopoulos D, Lieberoth BC, Pogoda H-M, Feldner J, Ebert A, et al (2007) Contactin 1a expression is associated with oligodendrocyte differentiation and axonal regeneration in the central nervous system of zebrafish. Mol Cell Neurosci 35:194–207

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JA, Yoon MG (1982) Morphology of radial glia, ependymal cells, and periventricular neurons in the optic tectum of goldfish (Carassius auratus). J Comp Neurol 205:128–138

    Article  PubMed  CAS  Google Scholar 

  • Stuermer CAO, Bastmeyer M, Bähr M, Strobe G, Paschke K (1992) Trying to understand axonal regeneration in the CNS of fish. J Neurobiol 23:537–550

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa K, Inoue Y, Nakayasu H (2000a) A monoclonal antibody stains radial glia in the adult zebrafish (Danio rerio) CNS. J Neurocytol 29:119–128

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa K, Inoue Y, Doi S, Nakayasu H (2000b) Monoclonal antibody stains oligodendrocytes and Schwann cells in zebrafish (Danio rerio). Anat Embryol 201:339–406

    Article  Google Scholar 

  • Velasco A, Brinon JG, Caminos E, Lara JM, Aijòn J (1997) S-100-positive glial cells are involved in the regeneration of the visual pathway of teleosts. Brain Res Bull 43:327–336

    Article  PubMed  CAS  Google Scholar 

  • Vernadakis A (1996) Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol 49:185–214

    Article  PubMed  CAS  Google Scholar 

  • Wanner M, Lang DM, Bandtlow CE, Schwab ME, Bastmeyer M, Stuermer CAO (1995) Revaluation of the growth-permissive substrate properties of goldfish optic nerve myelin and myelin proteins. J Neurosci 15:7500–7508

    PubMed  CAS  Google Scholar 

  • Wen C-M, Cheng Y-H, Huang Y-F, Wang C-S (2008) Isolation and characterization of a neural progenitor cell line from tilapia brain. Comp Bioch Physiol [A] 149:167–180

    Google Scholar 

  • Zupanc GKH (1999) Up-regulation of somatostatin after lesions in the cerebellum of the teleost fish Apteronotus leptorhynchus. Neurosci Lett 268:135–138

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GKH, Clint SC (2001) Radial glia-mediated up-regulation of somatostatin in the regenerating adult fish brain. Neurosci Lett 309:149–152

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GKH, Clint SC (2003) Potential role of radial glia in adult neurogenesis of teleost fish. Glia 43:77–86

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. E. W. Roubos for critical reading and for corrections to the manuscript. Thanks are also due to Dr. M. Mandrioli for support and discussions, in particular concerning genomic and molecular aspects, and to Prof. E. Pannese, whose work and kindness are models for the authors of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucrezia Mola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuoghi, B., Mola, L. Macroglial cells of the teleost central nervous system: a survey of the main types. Cell Tissue Res 338, 319–332 (2009). https://doi.org/10.1007/s00441-009-0870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0870-2

Keywords

Navigation