Skip to main content

Advertisement

Log in

Carboxypeptidase E, an essential element of the regulated secretory pathway, is expressed and partially co-localized with chromogranin A in chicken thymus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although the functions of hormones and neuropeptides in the thymus have been extensively studied, we still do not know whether these intra-thymic humoral elements are released in a stimulated manner via the regulated secretory pathway or in a constitutive manner. Carboxypeptidase E (CpE) and chromogranin A (CgA) are functional and structural hallmarks of the regulated secretory pathway in (neuro)endocrine cells. Whereas we have previously shown a CgA-positive neuroendocrine population in the chicken thymus, the current study assesses the expression of CpE in the thymus, both at the mRNA and the protein level. Our immunohistochemical studies provide evidence for the co-existence of CgA and CpE in identical neuroendocrine cells in the thymus. CpE and CgA dual-positive cells have primarily been found in the transition zone between the cortex and medulla of the thymus, an area known to contain numerous arterioles and to be innervated by the autonomic nervous system. Our findings suggest that the diffuse neuroendocrine system serves as a relay for nervous stimuli delivered by the sympathetic and/or parasympathetic nervous system. Thus, these newly defined neuroendocrine cells might play an important role in the immuno-neuro-endocrine cross-talk in the thymus, potentially enabling thymopoiesis to be fine-tuned via the regulated secretory pathway by a variety of physical and environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • al-Shawaf AA, Kendall MD, Cowen T (1991) Identification of neural profiles containing vasoactive intestinal polypeptide, acetylcholinesterase and catecholamines in the rat thymus. J Anat 174:131–143

    PubMed  CAS  Google Scholar 

  • Atoji Y, Yamamoto Y, Komatsu T, Suzuki Y (1997) Localization of neuropeptides in endocrine cells of the chicken thymus. J Vet Med Sci 59:601–603

    Article  PubMed  CAS  Google Scholar 

  • Bodey B (2002) Neuroendocrine influence on thymic haematopoiesis via the reticulo-epithelial cellular network. Expert Opin Ther Targets 6:57–72

    Article  PubMed  CAS  Google Scholar 

  • Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (2000) The role of the reticulo-epithelial (RE) cell network in the immuno-neuroendocrine regulation of intrathymic lymphopoiesis. Anticancer Res 20:1871–1888

    PubMed  CAS  Google Scholar 

  • Brakch N, Allemandou F, Cavadas C, Grouzmann E, Brunner HR (2002) Dibasic cleavage site is required for sorting to the regulated secretory pathway for both pro- and neuropeptide Y. J Neurochem 81:1166–1175

    Article  PubMed  CAS  Google Scholar 

  • Dhanvantari S, Arnaoutova I, Snell CR, Steinbach PJ, Hammond K, Caputo GA, London E, Loh YP (2002) Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry 41:52–60

    Article  PubMed  CAS  Google Scholar 

  • Franchini A, Ottaviani E (1999) Immunoreactive POMC-derived peptides and cytokines in the chicken thymus and bursa of Fabricius microenvironments: age-related changes. J Neuroendocrinol 11:685–692

    Article  PubMed  CAS  Google Scholar 

  • Gulati P, Tay SS, Leong SK (1997) Nitrergic, peptidergic and substance P innervation of the chick thymus. J Hirnforsch 38:553–564

    PubMed  CAS  Google Scholar 

  • Gulati P, Leong S, Chan AS (1998) Ontogeny of NADPH-d expression in the thymic microenvironment of the chick embryo. Cell Tissue Res 294:335–343

    Article  PubMed  CAS  Google Scholar 

  • Hendy GN, Li T, Girard M, Feldstein RC, Mulay S, Desjardins R, Day R, Karaplis AC, Tremblay ML, Canaff L (2006) Targeted ablation of the chromogranin a (Chga) gene: normal neuroendocrine dense-core secretory granules and increased expression of other granins. Mol Endocrinol 20:1935–1947

    Article  PubMed  CAS  Google Scholar 

  • Hook V, Yasothornsrikul S, Greenbaum D, Medzihradszky KF, Troutner K, Toneff T, Bundey R, Logrinova A, Reinheckel T, Peters C, Bogyo M (2004) Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones. Biol Chem 385:473–480

    Article  PubMed  CAS  Google Scholar 

  • Kim T, Loh YP (2006) Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation. Mol Biol Cell 17:789–798

    Article  PubMed  CAS  Google Scholar 

  • Kyewski RB, Klein L (2000) Making central T-cell tolerance efficient: thymic stromal cells sample distinct self-antigen pools. Curr Top Microbiol Immunol 251:139–145

    PubMed  CAS  Google Scholar 

  • Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis. Cell 106:499–509

    Article  PubMed  CAS  Google Scholar 

  • Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2002) Large dense-core secretory granule biogenesis is under the control of chromogranin A in neuroendocrine cells. Ann N Y Acad Sci 971:323–331

    Article  PubMed  CAS  Google Scholar 

  • Kim T, Zhang CF, Sun Z, Wu H, Loh YP (2005) Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule biogenesis. J Neurosci 25:6958–6961

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lamberts S (1999) The thymus: at the interface between immunology and neuroendocrinology. Ann Med 31 (Suppl 2):3-4

    PubMed  Google Scholar 

  • Loh YP, Kim T, Rodriguez YM, Cawley NX (2004) Secretory granule biogenesis and neuropeptide sorting to the regulated secretory pathway in neuroendocrine cells. J Mol Neurosci 22:63–71

    Article  PubMed  Google Scholar 

  • Mahapatra NR, O'Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952

    Article  PubMed  CAS  Google Scholar 

  • Millington G, Buckingham JC (1992) Thymic peptides and neuroendocrine-immune communication. J Endocrinol 133:163–168

    Article  PubMed  CAS  Google Scholar 

  • Mukamoto M, Kodama H (2000) Regulation of early chicken thymocyte proliferation by transforming growth factor-beta from thymic stromal cells and thymocytes. Vet Immunol Immunopathol 77:121–132

    Article  PubMed  CAS  Google Scholar 

  • Mukamoto M, Kodama H, Baba T (1999) Effects of cytokines from thymocytes and thymic stromal cells on chicken intrathymic T cell development. Vet Immunol Immunopathol 67:223–233

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Franceschi C (1997) Evolution of neuroendocrine thymus: studies on POMC-derived peptides, cytokines and apoptosis in lower and higher vertebrates. J Neuroimmunol 72:67–74

    Article  PubMed  CAS  Google Scholar 

  • Oubre CM, Zhang X, Clements KE, Porter TE, Berghman LR (2004) Immunohistochemical assessment of the neurosecretory cells of the chicken thymus using a novel monoclonal antibody against avian chromogranin A. Dev Comp Immunol 28:337–345

    Article  PubMed  CAS  Google Scholar 

  • Palmer E (2003) Negative selection? Clearing out the bad apples from the T-cell repertoire? Nat Rev Immunol 3:383–391

    Article  PubMed  CAS  Google Scholar 

  • Proudman JA, Clerens S, Bergh G van den, Garrett WM, Verhaert PD, Vandesande F, Berghman LR (2003) Immunohistochemical localization of chromogranin A in gonadotrophs and somatotrophs of the turkey and chicken pituitary. Gen Comp Endocrinol 132:293–303

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228

    Article  PubMed  CAS  Google Scholar 

  • Silva AB, Aw D, Palmer DB (2006) Evolutionary conservation of neuropeptide expression in the thymus of different species. Immunology 118:131–140

    Article  PubMed  CAS  Google Scholar 

  • Solomou K, Ritter MA, Palmer DB (2002) Somatostatin is expressed in the murine thymus and enhances thymocyte development. Eur J Immunol 32:1550–1559

    Article  PubMed  CAS  Google Scholar 

  • Zhang CF, Snell CR, Loh YP (1999) Identification of a novel prohormone sorting signal-binding site on carboxypeptidase E, a regulated secretory pathway-sorting receptor. Mol Endocrinol 13:527–536

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc R. Berghman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhu, J., Loh, Y.P. et al. Carboxypeptidase E, an essential element of the regulated secretory pathway, is expressed and partially co-localized with chromogranin A in chicken thymus. Cell Tissue Res 337, 371–379 (2009). https://doi.org/10.1007/s00441-009-0830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0830-x

Keywords

Navigation