Glucosamine sulphate does not increase extracellular matrix production at low oxygen tension

Abstract

Low oxygen tension may change the dependence of chondrocytes on exogenous carbohydrate sources. In this study, we have investigated whether glucosamine sulphate (GS) stimulates proteoglycan synthesis, the mRNA expression of aggrecan and of type II collagen, and UDP-sugar levels in bovine primary chondrocytes under a low oxygen (O2) atmosphere. Chondrocytes from bovine femoral condyles were cultivated with or without GS or sulphate at various concentrations in low- (5.5 mM) or high-glucose (25 mM) DMEM under either a 5% or 20% O2 atmosphere for 2 or 8 days after isolation. The mRNA expression of aggrecan and type II collagen and the synthesis of glycosaminoglycan (GAG) were determined by quantitative real-time reverse transcription with polymerase chain reaction and a [35S]-sulphate incorporation assay, respectively. Aggrecan promoter activity was analysed by a dual-luciferase reporter gene assay. Intracellular UDP-N-acetylhexosamines (UDP-HexN), UDP-glucuronic acid and UDP-hexoses were analysed by reversed-phase high-performance liquid chromatography electrospray ionization mass spectrometry. A low (5%) O2 atmosphere significantly increased GAG synthesis, mRNA expression of aggrecan and of type II collagen and aggrecan promoter activity in bovine primary chondrocytes. A high (1 mM) concentration of GS was required to increase the level of UDP-HexN. However, GS did not increase GAG synthesis, aggrecan promoter activity or mRNA expression of aggrecan and of type II collagen. Interestingly, a 5% O2 atmosphere increased the level of UDP-HexN in 8-day cultures without GS treatment. Thus, exogenous GS does not change chondrocyte metabolism, whereas a 5% O2 atmosphere stimulates extracellular matrix production in bovine primary chondrocytes. The balance of UDP-sugars is changed under a 5% O2 atmosphere for longer culture periods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bassleer C, Rovati L, Franchimont P (1998) Stimulation of proteoglycan production by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular cartilage in vitro. Osteoarthritis Cartilage 6:427–434

    PubMed  CAS  Article  Google Scholar 

  2. Beaudry F, Vachon P (2008) Determination of glucosamine in horse plasma by liquid chromatography tandem mass spectrometry. Biomed Chromatogr 22:1–4

    PubMed  CAS  Article  Google Scholar 

  3. Brighton CT, Heppenstall RB (1971) Oxygen tension in zones of the epiphyseal plate, the metaphysis and diaphysis. An in vitro and in vivo study in rats and rabbits. J Bone Joint Surg Am 53:719–728

    PubMed  CAS  Google Scholar 

  4. Clegg DO, Reda DJ, Harris CL, Klein MA, O’Dell JR, Hooper MM, Bradley JD, Bingham CO 3rd, Weisman MH, Jackson CG, Lane NE, Cush JJ, Moreland LW, Schumacher HR Jr, Oddis CV, Wolfe F, Molitor JA, Yocum DE, Schnitzer TJ, Furst DE, Sawitzke AD, Shi H, Brandt KD, Moskowitz RW, Williams HJ (2006) Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med 354:795–808

    PubMed  CAS  Article  Google Scholar 

  5. Coimbra IB, Jimenez SA, Hawkins DF, Piera-Velazquez S, Stokes DG (2004) Hypoxia inducible factor-1 alpha expression in human normal and osteoarthritic chondrocytes. Osteoarthritis Cartilage 12:336–345

    PubMed  Article  Google Scholar 

  6. Dodge GR, Jimenez SA (2003) Glucosamine sulfate modulates the levels of aggrecan and matrix metalloproteinase-3 synthesized by cultured human osteoarthritis articular chondrocytes. Osteoarthritis Cartilage 11:424–432

    PubMed  CAS  Article  Google Scholar 

  7. Domm C, Schunke M, Christesen K, Kurz B (2002) Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis Cartilage 10:13–22

    PubMed  CAS  Article  Google Scholar 

  8. Etherington PJ, Winlove P, Taylor P, Paleolog E, Miotla JM (2002) VEGF release is associated with reduced oxygen tensions in experimental inflammatory arthritis. Clin Exp Rheumatol 20:799–805

    PubMed  CAS  Google Scholar 

  9. Felson DT (2008) Glucosamine sulfate might have no effect on pain or structural changes associated with ostoearthritis. Nat Clin Pract Rheumatol 4:518–519

    PubMed  CAS  Article  Google Scholar 

  10. Fenton JI, Chlebek-Brown KA, Peters TL, Caron JP, Orth MW (2000) Glucosamine HCl reduces equine articular cartilage degradation in explant culture. Osteoarthritis Cartilage 8:258–265

    PubMed  CAS  Article  Google Scholar 

  11. Fermor B, Christensen SE, Youn I, Cernanec JM, Davies CM, Weinberg JB (2007) Oxygen, nitric oxide and articular cartilage. Eur Cell Mater 13:56–65

    PubMed  CAS  Google Scholar 

  12. Ferrell WR, Najafipour H (1992) Changes in synovial PO2 and blood flow in the rabbit knee joint due to stimulation of the posterior articular nerve. J Physiol (Lond) 449:607–617

    CAS  Google Scholar 

  13. Gouze JN, Bianchi A, Becuwe P, Dauca M, Netter P, Magdalou J, Terlain B, Bordji K (2002) Glucosamine modulates IL-1-induced activation of rat chondrocytes at a receptor level, and by inhibiting the NF-kappaB pathway. FEBS Lett 510:166–170

    PubMed  CAS  Article  Google Scholar 

  14. Grimshaw MJ, Mason RM (2000) Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage 8:386–392

    PubMed  CAS  Article  Google Scholar 

  15. Grimshaw MJ, Mason RM (2001) Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthritis Cartilage 9:357–364

    PubMed  CAS  Article  Google Scholar 

  16. Hansen U, Schunke M, Domm C, Ioannidis N, Hassenpflug J, Gehrke T, Kurz B (2001) Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. J Biomech 34:941–949

    PubMed  CAS  Article  Google Scholar 

  17. Hoffer LJ, Kaplan LN, Hamadeh MJ, Grigoriu AC, Baron M (2001) Sulfate could mediate the therapeutic effect of glucosamine sulfate. Metabolism 50:767–770

    PubMed  CAS  Article  Google Scholar 

  18. Kurz B, Domm C, Jin M, Sellckau R, Schunke M (2004) Tissue engineering of articular cartilage under the influence of collagen I/III membranes and low oxygen tension. Tissue Eng 10:1277–1286

    PubMed  CAS  Google Scholar 

  19. Lammi MJ, Qu CJ, Laasanen MS, Saarakkala S, Rieppo J, Jurvelin JS, Töyräs J (2004) Undersulfated chondroitin sulfate does not increase in osteoarthritic cartilage. J Rheumatol 31:2449–2453

    PubMed  CAS  Google Scholar 

  20. Lane JM, Brighton CT, Menkowitz BJ (1977) Anaerobic and aerobic metabolism in articular cartilage. J Rheumatol 4:334–342

    PubMed  CAS  Google Scholar 

  21. Largo R, Alvarez-Soria MA, Diez-Ortego I, Calvo E, Sanchez-Pernaute O, Egido J, Herrero-Beaumont G (2003) Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 11:290–298

    PubMed  CAS  Article  Google Scholar 

  22. Lee RB, Urban JP (1997) Evidence for a negative Pasteur effect in articular cartilage. Biochem J 321:95–102

    PubMed  CAS  Google Scholar 

  23. Lund-Olesen K (1970) Oxygen tension in synovial fluids. Arthritis Rheum 13:769–776

    PubMed  CAS  Article  Google Scholar 

  24. Mattei M de, Pellati A, Pasello M, Terlizzi F de, Massari L, Gemmati D, Caruso A (2002) High doses of glucosamine-HCl have detrimental effects on bovine articular cartilage explants cultured in vitro. Osteoarthritis Cartilage 10:816–825

    PubMed  Article  Google Scholar 

  25. Moussavi-Harami F, Duwayri Y, Martin JA, Moussavi-Harami F, Buckwalter JA (2004) Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering. Iowa Orthop J 24:15–20

    PubMed  Google Scholar 

  26. Mroz PJ, Silbert JE (2003) Effects of [3H]glucosamine concentration on [3H]chondroitin sulphate formation by cultured chondrocytes. Biochem J 376:511–515

    PubMed  CAS  Article  Google Scholar 

  27. Mroz PJ, Silbert JE (2004) Use of 3H-glucosamine and 35S-sulfate with cultured human chondrocytes to determine the effect of glucosamine concentration on formation of chondroitin sulfate. Arthritis Rheum 50:3574–3579

    PubMed  CAS  Article  Google Scholar 

  28. Murphy CL, Polak JM (2004) Control of human articular chondrocyte differentiation by reduced oxygen tension. J Cell Physiol 199:451–459

    PubMed  CAS  Article  Google Scholar 

  29. Najafipour H, Ferrell WR (1995) Comparison of synovial PO2 and sympathetic vasoconstrictor responses in normal and acutely inflamed rabbit knee joints. Exp Physiol 80:209–220

    PubMed  CAS  Google Scholar 

  30. Neil KM, Orth MW, Coussens PM, Chan PS, Caron JP (2005) Effect of glucosamine and chondroitin sulfate on mediators of osteoarthritis in cultured equine chondrocytes stimulated by use of recombinant equine interleukin-1beta. Am J Vet Res 66:1861–1869

    PubMed  CAS  Article  Google Scholar 

  31. Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M (1992) Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res 10:610–620

    PubMed  CAS  Article  Google Scholar 

  32. Pavelka K, Gatterova J, Olejarova M, Machacek S, Giacovelli G, Rovati LC (2002) Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. Arch Intern Med 162:2113–2123

    PubMed  CAS  Article  Google Scholar 

  33. Persiani S, Roda E, Rovati LC, Locatelli M, Giacovelli G, Roda A (2005) Glucosamine oral bioavailability and plasma pharmacokinetics after increasing doses of crystalline glucosamine sulfate in man. Osteoarthritis Cartilage 13:1041–1049

    PubMed  CAS  Article  Google Scholar 

  34. Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2006) Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev 22:198–203

    PubMed  CAS  Article  Google Scholar 

  35. Qu CJ, Karjalainen HM, Helminen HJ, Lammi MJ (2006) The lack of effect of glucosamine sulphate on aggrecan mRNA expression and 35S-sulphate incorporation in bovine primary chondrocytes. Biochim Biophys Acta 1762:453–459

    PubMed  CAS  Google Scholar 

  36. Qu CJ, Jauhiainen M, Auriola S, Helminen HJ, Lammi MJ (2007a) Effects of glucosamine sulfate on intracellular UDP-hexosamine and UDP-glucuronic acid levels in bovine primary chondrocytes. Osteoarthritis Cartilage 15:773–779

    PubMed  Article  Google Scholar 

  37. Qu CJ, Rieppo J, Hyttinen MM, Lammi MJ, Kiviranta I, Kurkijarvi J, Jurvelin JS, Töyräs J (2007b) Human articular cartilage proteoglycans are not undersulfated in osteoarthritis. Connect Tissue Res 48:27–33

    PubMed  CAS  Article  Google Scholar 

  38. Rajpurohit R, Koch CJ, Tao Z, Teixeira CM, Shapiro IM (1996) Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. J Cell Physiol 168:424–432

    PubMed  CAS  Article  Google Scholar 

  39. Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O, Giacovelli G, Henrotin Y, Dacre JE, Gossett C (2001) Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 357:251–256

    PubMed  CAS  Article  Google Scholar 

  40. Rozendaal RM, Koes BW, Osch GJ van, Uitterlinden EJ, Garling EH, Willemsen SP, Ginai AZ, Verhaar JA, Weinans H, Bierma-Zeinstra SM (2008) Effect of glucosamine sulphate on hip osteoarthritis: a randomized trial. Ann Intern Med 148:268–277

    PubMed  Google Scholar 

  41. Saini S, Wick TM (2004) Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor. Tissue Eng 10:825–832

    PubMed  CAS  Article  Google Scholar 

  42. Sandy JD, Gamett D, Thompson V, Verscharen C (1998) Chondrocyte-mediated catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or retinoic acid can be inhibited by glucosamine. Biochem J 335:59–66

    PubMed  CAS  Google Scholar 

  43. Scherer K, Schunke M, Sellckau R, Hassenpflug J, Kurz B (2004) The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology 41:323–333

    PubMed  CAS  Google Scholar 

  44. Suzuki N, Svensson K, Eriksson UJ (1996) High glucose concentration inhibits migration of rat cranial neural crest cells in vitro. Diabetologia 39:401–411

    PubMed  CAS  Article  Google Scholar 

  45. Terry DE, Rees-Milton K, Pruss C, Hopwood J, Carran J, Anastassiades TP (2007) Modulation of articular chondrocyte proliferation and anionic glycoconjugate synthesis by glucosamine (GlcN), N-acetyl GlcN (GlcNAc) GlcN sulfate salt (GlcN.S) and covalent glucosamine sulfates (GlcN-SO4). Osteoarthritis Cartilage 15:946–956

    PubMed  CAS  Article  Google Scholar 

  46. Treuhaft PS, McCarty DJ (1971) Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum 14:475–484

    PubMed  CAS  Article  Google Scholar 

  47. Tsai TT, Danielson KG, Guttapalli A, Oguz E, Albert TJ, Shapiro IM, Risbud MV (2006) TonEBP/OREBP is a regulator of nucleus pulposus cell function and survival in the intervertebral disc. J Biol Chem 281:25416–25424

    PubMed  CAS  Article  Google Scholar 

  48. Uitterlinden EJ, Jahr H, Koevoet JL, Jenniskens YM, Bierma-Zeinstra SM, Degroot J, Verhaar JA, Weinans H, Osch GJ van (2006) Glucosamine decreases expression of anabolic and catabolic genes in human osteoarthritic cartilage explants. Osteoarthritis Cartilage 14:250–257

    PubMed  CAS  Article  Google Scholar 

  49. Varghese S, Theprungsirikul P, Sahani S, Hwang N, Yarema KJ, Elisseef JH (2007) Glucosamine modulates chondrocyte proliferation, matrix synthesis, and gene expression. Osteoarthritis Cartilage 15:59–68

    PubMed  CAS  Article  Google Scholar 

  50. Vlad SC, LaValley MP, McAlindon TE, Felson DT (2007) Glucosamine for pain in osteoarthritis: why do trial results differ? Arthritis Rheum 56:2267–2277

    PubMed  CAS  Article  Google Scholar 

  51. Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F (2005) Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol 204:184–191

    PubMed  CAS  Article  Google Scholar 

  52. Wernike E, Li Z, Alini M, Grad S (2008) Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs. Cell Tissue Res 331:473–483

    PubMed  CAS  Article  Google Scholar 

  53. Ye H, Zheng Y, Ma W, Ke D, Jin X, Liu S, Wang D (2005) Hypoxia down-regulates secretion of MMP-2, MMP-9 in porcine pulmonary artery endothelial and smooth muscle cells and the role of HIF-1. J Huazhong Univ Sci Technolog Med Sci 25:407

    Google Scholar 

  54. Zhou S, Cui Z, Urban JP (2004) Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum 50:3915–3924

    PubMed  Article  Google Scholar 

Download references

Acknowledgement

We are grateful to Dr. Hannu Karjalainen for discussions and tests involving reporter gene analysis, to Dr. Kari Törrönen for help with the computer and to Mr. Kari Kotikumpu for his assistance with oxygen tension measurements during this study. We express our special thanks to statistician Mrs. Marja-Leena Hannila for checking the statistical analyses of this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cheng-Juan Qu.

Additional information

This study was supported by the Sigrid Juselius Foundation.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qu, CJ., Pöytäkangas, T., Jauhiainen, M. et al. Glucosamine sulphate does not increase extracellular matrix production at low oxygen tension. Cell Tissue Res 337, 103–111 (2009). https://doi.org/10.1007/s00441-009-0797-7

Download citation

Keywords

  • Chondrocyte
  • Glucosamine sulphate
  • UDP-sugars
  • Proteoglycans
  • Oxygen tension
  • Bovine