Advertisement

Cell and Tissue Research

, Volume 336, Issue 2, pp 309–323 | Cite as

Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot

  • Jan A. Veenstra
Regular Article

Abstract

Endocrine cells in the larval midgut of Drosophila melanogaster are recognized by antisera to seven regulatory peptides: the allatostatins A, B, and C, short neuropeptide F, neuropeptide F, diuretic hormone 31, and the tachykinins. These are the same peptides that are produced by the endocrine cells of the adult midgut, except for short neuropeptide F, which is absent in adult midgut endocrine cells. The anterior larval midgut contains two types of endocrine cells. The first produces short neuropeptide F, which is also recognized by an antiserum to the receptor for the diuretic hormone leucokinin. The second type in the anterior midgut is recognized by an antiserum to diuretic hormone 31. The latter cell type is also found in the junction between the anterior and middle midgut; an additional type of endocrine cell in this region produces allatostatin B, a peptide also known as myoinhibitory peptide. Both types of endocrine cells in the junction between the anterior and middle midgut can express the homeodomain transcription factor labial. The copper cell region contains small cells that either produce allatostatin C or a combination of neuropeptide F, allatostatin B, and diuretic hormone 31. The latter cell type is also found in the region of the large flat cells. The posterior midgut possesses strongly immunoreactive allatostatin C endocrine cells immediately behind the iron cells. In the next part of the posterior midgut, two cell types have been found: one produces diuretic hormone 31, and a second is strongly immunoreactive to antiserum against the leucokinin receptor and weakly immunoreactive to antisera against allatostatins B and C and short neuropeptide F. The last part of the posterior midgut again has two types of endocrine cells: those that produce allatostatin A, and those that produce tachykinins. Many of the latter cells are also weakly immunoreactive to the antiserum against diuretic hormone 31. As in the adult, the insulin-like peptide 3 gene appears to be expressed by midgut muscles, but not by midgut endocrine cells.

Keywords

Tachykinin Labial Allatostatin sNPF Diuretic hormone Neuropeptide F Drosophila melanogaster (Insecta) 

Notes

Acknowledgements

I am grateful to Heinrich Reichert, Ping Shen, and Paul Taghert for generously sending various fly lines, to Frank Hirth, Cok Grimmelikhuijzen, Liliane Schoofs, Julian Dow, René Feyereisen, and Heinrich Dircksen for sharing valuable antisera, to Jean-Luc Morel for an aliquot of his rhodamine-labeled phalloidoin, to Venkat Chintapalli, Jing Wang, and Julian Dow for the timely addition of larval tissues to the Fly Atlas, and to two anonymous reviewers for constructive criticism of the manuscript.

References

  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YHC, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Miklos GLG, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies A, de Pablos B, Delcher A, Deng ZM, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, D Chen unn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong FC, Gorrell JH, Gu ZP, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston DA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke ZX, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai ZW, Lasko P, Lei YD, Levitsky AA, Li JY, Li ZY, Liang Y, Lin XY, Liu XJ, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RDC, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AHH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, Woodage T, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang GG, Zhao Q, Zheng LS, Zheng XQH, Zhong FN, Zhong WY, Zhou XJ, Zhu SP, Zhu XH, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedCrossRefGoogle Scholar
  2. Agricola H-J, Bräunig P, Meissner R, Nauman W, Wollweber L, Davis N (1995) Colocalization of allostatin-like immunoreactivity with other neuromodulators in the CNS of Periplaneta americana. In: Elsner N, Menzel R (eds) Learning and memory. Thieme, Stuttgart, p 616Google Scholar
  3. Alpert S, Hanhan D, Teitelman G (1988) Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53:295–308PubMedCrossRefGoogle Scholar
  4. Andriès JC, Belemtougri G, Tramu G (1991) Multiple peptide immunoreacivities in the nervous system of Aeschna cyanea (Insecta, Odonata). Histochem 96:139–148CrossRefGoogle Scholar
  5. Angelini DR, Kaufman TC (2005) Comparative developmental genetics and the evolution of arthropod body parts. Annu Rev Genet 39:95–119PubMedCrossRefGoogle Scholar
  6. Baggerman G, Cerstiaens A, De Loof A, Schoofs L (2002) Peptidomics of the larval Drosophila melanogaster central nervous system. J Biol Chem 277:40368–40374PubMedCrossRefGoogle Scholar
  7. Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L (2005) Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J Mass Spectrom 40:250–260PubMedCrossRefGoogle Scholar
  8. Becker MN, Brenner R, Atkinson NS (1995) Tissue-specific expression of a Drosophila calcium-activated potassium channel. J Neurosci 15:6250–6259PubMedGoogle Scholar
  9. Boer HH, Schot LPC, Veenstra JA, Reichelt D (1980) Immunocytochemical identification of neural elements in the central nervous systems of a snail, some insects, a fish, and a mammal with an antiserum to the molluscan cardio-excitatory tetrapeptide FMRF-amide. Cell Tissue Res 231:21–27Google Scholar
  10. Burke R, Commons E, Camakaris J (2008) Expression and localisation of the essential copper transporter DmATP7 in Drosophila neuronal and intestinal tissues. Int J Biochem Cell Biol 40:1850–1860PubMedCrossRefGoogle Scholar
  11. Cabrero P, Radford JC, Broderick KE, Costes L, Veenstra JA, Spana EP, Davies SA, Dow JA (2002) The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP. J Exp Biol 205:3799–3807PubMedGoogle Scholar
  12. Chen Y, Veenstra JA, Davis NT, Hagedorn HH (1994) A comparative study of leucokinin-immunoreactive neurons in insects. Cell Tissue Res 276:69–83PubMedCrossRefGoogle Scholar
  13. Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720PubMedCrossRefGoogle Scholar
  14. Coast GM, Webster SG, Schegg KM, Tobe SS, Schooley DA (2001) The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 204:1795–1804PubMedGoogle Scholar
  15. Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Riehm JP (1987) The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: identification by antiserum against synthetic PDH. Cell Tissue Res 250:377–387CrossRefGoogle Scholar
  16. Dubreuil RR, Frankel J, Wang P, Howrylak J, Kappil M, Grushko TA (1998) Mutations of a spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae. Dev Biol 194:1–11PubMedCrossRefGoogle Scholar
  17. Dubreuil RR, Grushko T, Baumann O (2001) Differential effects of a labial mutation on the development, structure, and function of stomach acid-secreting cells in Drosophila melanogaster larvae and adults. Cell Tissue Res 306:167–178PubMedCrossRefGoogle Scholar
  18. Fuse M, Zhang JR, Partridge E, Nachman RJ, Orchard I, Bendena WG, Tobe SS (1999) Effects of an allatostatin and a myosuppressin on midgut carbohydrate enzyme activity in the cockroach Diploptera punctata. Peptides 20:1285–1293PubMedCrossRefGoogle Scholar
  19. Grimmelikhuijzen CJP, Graff D (1986) Isolation of pyroGlu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proc Natl Acad Sci USA 83:9817–9821PubMedCrossRefGoogle Scholar
  20. Hauser F, Williamson M, Cazzamali G, Grimmelikhuijzen CJP (2006) Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data. Brief Funct Genomic Proteomic 4:321–430PubMedCrossRefGoogle Scholar
  21. Hirth F, Hartmann B, Reichert H (1998) Homeotic gene action in embryonic brain development of Drosophila. Development 125:1579–1589PubMedGoogle Scholar
  22. Hirth F, Loop T, Egger B, Miller DFB, Kaufman TC, Reichert R (2001) Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila. Development 128:4781–4788PubMedGoogle Scholar
  23. Hoppler S, Bienz M (1994) Specification of a single cell type by a Drosophila homeotic gene. Cell 76:689–702PubMedCrossRefGoogle Scholar
  24. Hoppler S, Bienz M (1995) Two different thresholds of wingless signalling with distinct developmental consequences in the Drosophila midgut. EMBO J 14:5016–5026PubMedGoogle Scholar
  25. Isabel G, Martin JR, Chidami S, Veenstra JA, Rosay P (2005) AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol 288:R531–R538PubMedGoogle Scholar
  26. Johard HA, Enell LE, Gustafsson E, Trifilieff P, Veenstra JA, Nässel DR (2008) Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters. J Comp Neurol 507:1479–1496PubMedCrossRefGoogle Scholar
  27. Johnson EC, Bohn LM, Taghert PH (2004) Drosophila CG8422 encodes a functional diuretic hormone receptor. J Exp Biol 207:743–748PubMedCrossRefGoogle Scholar
  28. Kean L, Cazenave W, Costes L, Broderick KE, Graham S, Pollock VP, Davies SA, Veenstra JA, Dow JAT (2002) Two nitridergic peptides are encoded by the gene capability in Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol 282:R1297–R1307PubMedGoogle Scholar
  29. Lee KY, Horodyski FM, Chamberlin ME (1998) Inhibition of midgut ion transport by allatotropin (Mas-AT) and Manduca FLRFamides in the tobacco hornworm Manduca sexta. J Exp Biol 201:3067–3074PubMedGoogle Scholar
  30. Liu F, Baggerman G, D’Hertog W, Verleyen P, Schoofs L, Wets G (2006) In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol Cell Protoemics 5:510–522CrossRefGoogle Scholar
  31. McNulty M, Puljung M, Jefford G, Dubreuil RR (2001) Evidence that a copper-metallothionein complex is responsible for fluorescence in acid-secreting cells of the Drosophila stomach. Cell Tissue Res 304:383–389PubMedCrossRefGoogle Scholar
  32. Meier S, Sprecher SG, Reichert H, Hirth F (2006) Ventral veins lacking is required for specification of the tritocerebrum in embryonic brain development of Drosophila. Mech Dev 123:76–83PubMedCrossRefGoogle Scholar
  33. Nakagoshi H (2005) Functional specification in the Drosophila endoderm. Dev Growth Differ 47:383–392PubMedCrossRefGoogle Scholar
  34. Nakagoshi H, Hoshi M, Nabeshima Y, Matsuzaki F (1998) A novel homeobox gene mediates the Dpp signal to establish functional specificity within target cells. Genes Dev 12:2724–2734PubMedCrossRefGoogle Scholar
  35. Onken H, Moffett SB, Moffett DF (2004) The anterior stomach of larval mosquitoes (Aedes aegypti): effects of neuropeptides on transepithelial ion transport and muscular motility. J Exp Biol 207:3731–3739PubMedCrossRefGoogle Scholar
  36. Park D, Veenstra JA, Park JH, Taghert PH (2008) Mapping peptidergic cells in Drosophila: where DIMM fits in. PLoS ONE 3(3):e1896. doi: 10.1371/journal.pone.0001896 PubMedCrossRefGoogle Scholar
  37. Pascual N, Maestro JL, Chiva C, Andreu D, Belles X (2008) Identification of a tachykinin-related peptide with orexigenic properties in the German cockroach. Peptides 29:386–392PubMedGoogle Scholar
  38. Radford JC, Davies SA, Dow JAT (2002) Systematic G-protein-coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles. J Biol Chem 277:38810–38817PubMedCrossRefGoogle Scholar
  39. Reichwald K, Unnithan GC, Davis NT, Agricola H, Feyereisen R (1994) Expression of the allatostatin gene in endocrine cells of the cockroach midgut. Proc Natl Acad Sci USA 91:11894–11898PubMedCrossRefGoogle Scholar
  40. Sakai T, Satake H, Takeda M (2006) Nutrient-induced α-amylase and protease activity is regulated by crustacean cardioactive peptide (CCAP) in the cockroach midgut. Peptides 27:2157–2164PubMedCrossRefGoogle Scholar
  41. Schonhoff SE, Giel-Moloney M, Leiter AB (2004) Minireview: development and differentiation of gut endocrine cells. Endocrinology 145:2639–2644PubMedCrossRefGoogle Scholar
  42. Schoofs L, Holman GM, Hayes TK, Nachman RJ, De Loof A (1991) Isolation, identification and synthesis of locustamyoinhibiting peptide (LOM-MIP), a novel biologically active neuropeptide from Locusta migratoria. Regul Pept 35:111–119CrossRefGoogle Scholar
  43. Schoofs L, Holman GM, Paemen L, Veelaert D, Amelinckx M, De Loof A (1993) Isolation, identification, and synthesis of PDVDHFLRFamide (SchistoFLRFamide) in Locusta migratoria and its association with the male accessory glands, the salivary glands, the heart, and the oviduct. Peptides 14:409–421PubMedCrossRefGoogle Scholar
  44. Siviter RJ, Coast GM, Winther AM, Nachman RJ, Taylor CA, Shirras AD, Coates D, Isaac RE, Nässel DR (2000) Expression and functional characterization of a Drosophila neuropeptide precursor with homology to mammalian preprotachykinin A. J Biol Chem 275:23273–23280PubMedCrossRefGoogle Scholar
  45. Strasburger M (1932) Bau, Funktion und Variabilität des Darmtractus von Drosophila melanogaster. Z Wiss Zool 140:539–649Google Scholar
  46. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA (2007) The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res Commun 352:305–310PubMedCrossRefGoogle Scholar
  47. Veenstra JA (2009) Allatostatin C and its paralog allatostatin double C: the arthropod somatostatins. Insect Biochem Mol Biol 39:161–170. doi: 10.1016/j.ibmb.2008.10.014 Google Scholar
  48. Veenstra JA, Costes L (1999) Isolation and identification of a peptide and its cDNA from the mosquito Aedes aegypti related to Manduca sexta allatotropin. Peptides 20:1145–1151PubMedCrossRefGoogle Scholar
  49. Veenstra JA, Davis NT (1993) Localization of corazonin in the nervous system of the cockroach Periplaneta americana. Cell Tissue Res 274:57–64PubMedCrossRefGoogle Scholar
  50. Veenstra JA, Hagedorn HH (1993) A sensitive enzyme immuno assay for Manduca allatotropin and the existence of an allatotropin-immunoreactive peptide in Periplaneta americana. Arch Insect Biochem Physiol 23:99–109CrossRefGoogle Scholar
  51. Veenstra JA, Lau GW, Agricola HJ, Petzel DH (1995) Immunohistological localization of regulatory peptides in the midgut of the female mosquito Aedes aegypti. Histochem Cell Biol 104:337–347PubMedCrossRefGoogle Scholar
  52. Veenstra JA, Agricola HJ, Sellami A (2008) Regulatory peptides in the fruit fly midgut. Cell Tissue Res 234:499–516CrossRefGoogle Scholar
  53. Winther AM, Nässel DR (2001) Intestinal peptides as circulating hormones: release of tachkinin-related peptide from the locust and cockroach midgut. J Exp Biol 204:1269–1280PubMedGoogle Scholar
  54. Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P (2003) Developmental control of foraging and social behavior by the Drosophila neurpeptide Y-like system. Neuron 39:147–161PubMedCrossRefGoogle Scholar
  55. Yamanaka N, Yamamoto S, Žitňan D, Watanabe K, Kawada T, Satake H, Kaneko Y, Hiruma K, Tanaka Y, Shinoda T, Kataoka H (2008) Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE 3(8):e3048. doi: 10.1371/journal.pone.0003048 PubMedCrossRefGoogle Scholar
  56. Yoon JG, Stay B (1995) Immunocytochemical localization of Diploptera punctata allatostatin-like peptide in Drosophila melanogaster. J Comp Neurol 363:475–488PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Université de Bordeaux, CNIC CNRS UMR 5228TalenceFrance

Personalised recommendations