Skip to main content

Advertisement

Log in

New insights into autophagic cell death in the gypsy moth Lymantria dispar: a proteomic approach

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Autophagy is an evolutionary ancient process based on the activity of genes conserved from yeast to metazoan taxa. Whereas its role as a mechanism to provide energy during cell starvation is commonly accepted, debate continues about the occurrence of autophagy as a means specifically activated to achieve cell death. The IPLB-LdFB insect cell line, derived from the larval fat body of the lepidoptera Lymantria dispar, represents a suitable model to address this question, as both autophagic and apoptotic cell death can be induced by various stimuli. Using morphological and functional approaches, we have observed that the culture medium conditioned by IPLB-LdFB cells committed to death by the ATPase inhibitor oligomycin A stimulates autophagic cell death in untreated IPLB-LdFB cells. Moreover, proteomic analysis of the conditioned media suggests that, in IPLB-LdFB cells, oligomycin A promotes a shift towards lipid metabolism, increases oxidative stress and specifically directs the cells towards autophagic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Baehrecke EH (2003) Autophagic programmed cell death in Drosophila. Cell Death Differ 10:940–945

    Article  PubMed  CAS  Google Scholar 

  • Beaulaton J, Lockshin RA (1977) Ultrastructural study of the normal degeneration of the intersegmental muscles of Anthereae polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference of cellular autophagy. J Morphol 154:39–57

    Article  PubMed  CAS  Google Scholar 

  • Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Bjellqvist B, Pasquali C, Ravier F, Sanchez JC, Hochstrasser D (1993) A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electrophoresis 14:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77

    Article  PubMed  Google Scholar 

  • Dolezal T, Dolezelova E, Zurovec M, Bryant PJ (2005) A role for adenosine deaminase in Drosophila larval development. PLoS Biol 3:e201

    Article  PubMed  Google Scholar 

  • Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  • Garcin F, Lau You Hin G, Côté J, Radouco-Thomas S, Chawla S, Radouco-Thomas C (1985) Aldehyde dehydrogenase in Drosophila: developmental and functional aspects. Alcohol 2:85–89

    Article  PubMed  CAS  Google Scholar 

  • Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605

    Article  PubMed  CAS  Google Scholar 

  • Grewal SS, Saucedo LJ (2004) Chewing the fat; regulating autophagy in Drosophila. Dev Cell 7:148–150

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser DF, Patchornik A, Merril CR (1988) Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining. Anal Biochem 173:412–423

    Article  PubMed  CAS  Google Scholar 

  • Juhász G, Puskás LG, Komonvi O, Érdi B, Maróy P, Neufeld TP, et al (2007) Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 14:1181–1190

    Article  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, Baehrecke EH (2001) Steroid regulation of autophagic programmed cell death during development. Development 128:1443–1455

    PubMed  CAS  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  PubMed  CAS  Google Scholar 

  • Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  PubMed  CAS  Google Scholar 

  • Loeb MJ, Hakim RS (1991) Development of genital imaginal discs of Heliotis virescens culture in vitro with 20-hydroxyecdysone and fat body or testis sheaths. Invert Reprod Dev 20:181–191

    CAS  Google Scholar 

  • Lynn DE, Dougherty EM, McClintock JT, Loeb M (1988) Development of cell lines from various tissues of Lepidoptera. In: Kuroda Y, Kurstak E, Maramorosch K (eds) Invertebrate and fish tissue culture. Japan Scientific Societies, Tokyo, pp 239–242

    Google Scholar 

  • Malagoli D (2008) Cell death in the IPLB-LdFB insect cell line: facts and implications. Curr Pharm Des 14:126–130

    Article  PubMed  CAS  Google Scholar 

  • Malagoli D, Conte A, Ottaviani E (2002) Protein kinases mediate nitric oxide-induced apoptosis in the insect cell line IPLB-LdFB. Cell Mol Life Sci 59:894–901

    Article  PubMed  CAS  Google Scholar 

  • Malagoli D, Iacconi I, Marchesini E, Ottaviani E (2005) Cell-death mechanisms in the IPLB-LdFB insect cell line: a nuclear located Bcl-2-like molecule as a possible controller of 2-deoxy-D-ribose-mediated DNA fragmentation. Cell Tissue Res 320:337–343

    Article  PubMed  CAS  Google Scholar 

  • Malagoli D, Marchesini E, Ottaviani E (2006) Lysosomes as the target of yessotoxin in invertebrate and vertebrate cell lines. Toxicol Lett 167:75–83

    Article  PubMed  CAS  Google Scholar 

  • Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35

    Article  PubMed  CAS  Google Scholar 

  • Molero L, García-Méndez A, Alonso-Orgaz S, Carrasco C, Macaya C, López Farré AJ (2005) Proteomic approach to identify changes in protein expression modified by 17β-oestradiol in bovine vascular smooth muscle cells. Clin Sci 109:457–463

    Article  PubMed  CAS  Google Scholar 

  • Müller F, Adori C, Sass M (2004) Autophagic and apoptotic features during programmed cell death in the fat body of the tobacco hornworm (Manduca sexta). Eur J Cell Biol 83:67–78

    Article  PubMed  Google Scholar 

  • Papanicolaou A, Gebauer-Jung S, Blaxter ML, Owen McMillan W, Jiggins CD (2008) ButterflyBase: a platform for lepidopteran genomics. Nucleic Acids Res 36:D582–D587

    Article  PubMed  CAS  Google Scholar 

  • Rusten TE, Lindmo K, Juhász G, Sass M, Seglen PO, Brech A, et al (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7:179–192

    Article  PubMed  CAS  Google Scholar 

  • Sass M, Kovács J (1975) Ecdysterone and an analogue of juvenile hormone on the autophagy in the cells of fat body of Mamestra brassicae. Acta Biol Acad Sci Hung 26:189–196

    PubMed  CAS  Google Scholar 

  • Sass M, Kovács J (1977) The effect of ecdysone on the fat body cells of the penultimate larvae of Mamestra brassicae. Cell Tissue Res 180:403–409

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Silva-Zacarin EC, Tomaino GA, Brocheto-Braga MR, Taboga SR, De Moraes RL (2007) Programmed cell death in the larval salivary glands of Apis mellifera (Hymenoptera, Apidae). J Biosci 32:309–328

    Article  PubMed  CAS  Google Scholar 

  • Smagghe GJ, Elsen K, Loeb MJ, Gelman DB, Blackburn M (2003) Effects of a fat body extract on larval midgut cells and growth of Lepidoptera. In Vitro Cell Dev Biol Anim 39:8–12

    Article  PubMed  Google Scholar 

  • Tanaka Y, Yamaguchi S, Fujii-Taira I, Iijima R, Natori S, Homma KJ (2006) Involvement of insect-derived growth factor (IDGF) in the cell growth of an embryonic cell line of flesh fly. Biochem Biophys Res Commun 350:334–338

    Article  PubMed  CAS  Google Scholar 

  • Tettamanti G, Malagoli D, Marchesini E, Congiu T, de Eguileor M, Ottaviani E (2006) Oligomycin A induces autophagy in the IPLB-LdFB insect cell line. Cell Tissue Res 326:179–186

    Article  PubMed  CAS  Google Scholar 

  • Tettamanti G, Malagoli D, Ottaviani E, de Eguileor M (2008a) Oligomycin A and the IPLB-LdFB insect cell line: actin and mitochondrial responses. Cell Biol Int 32:287–292

    Article  PubMed  CAS  Google Scholar 

  • Tettamanti G, Saló E, Gonzáles-Estévez C, Felix DA, Grimaldi A, de Eguileor M (2008b) Autophagy in invertebrates: insights into development, regeneration and body remodelling. Curr Pharm Des 14:116–125

    Article  PubMed  CAS  Google Scholar 

  • Thompson SN (2004) Dietary fat mediates hyperglycemia and the glucogenic response to increased protein consumption in an insect, Manduca sexta L. Biochim Biophys Acta 1673:208–216

    PubMed  CAS  Google Scholar 

  • Tsuzuki S, Iwami M, Sakurai S (2001) Ecdysteroid-inducible genes in the programmed cell death during insect metamorphosis. Insect Biochem Mol Biol 31:321–331

    Article  PubMed  CAS  Google Scholar 

  • Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH (2007) Apoptosis and autophagy function cooperatively for the efficacious execution of programmed nurse cell death during Drosophila virilis oogenesis. Autophagy 3:130–132

    PubMed  CAS  Google Scholar 

  • Wenzel P, Müller J, Zurmeyer S, Schuhmacher S, Schulz E, Oelze M, et al (2008) ALDH-2 deficiency increases cardiovascular oxidative stress–evidence for indirect antioxidative properties. Biochem Biophys Res Commun 367:137–143

    Article  PubMed  CAS  Google Scholar 

  • Wu YT, Tan HL, Huang Q, Kim YS, Pan N, Ong WY, et al (2008) Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4:457–466

    PubMed  CAS  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Zacarin EC (2007) Autophagy and apoptosis coordinate physiological cell death in larval salivary glands of Apis mellifera (Hymenoptera: Apidae). Autophagy 3:516–518

    PubMed  CAS  Google Scholar 

  • Zhang J, Iwai S, Tsugehara T, Takeda M (2006) MbIDGF, a novel member of the imaginal disc growth factor family in Mamestra brassicae, stimulates cell proliferation in two lepidopteran cell lines without insulin. Insect Biochem Mol Biol 36:536–546

    Article  PubMed  CAS  Google Scholar 

  • Zhivotovsky B (2002) From the nematode and mammals back to the pine tree: on the diversity and evolution of programmed cell death. Cell Death Differ 9:867–869

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman BT, Crawford GD, Dahl R, Simon FR, Mapoles JE (1995) Mechanisms of acetaldehyde-mediated growth inhibition: delayed cell cycle progression and induction of apoptosis. Alcohol Clin Exp Res 19:434–440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Dwight Lynn (INSell Consulting, 247 Lynch Rd, Newcastle, ME 04553, USA) for providing the IPLB-LdFB cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Malagoli.

Additional information

This work was supported by an F.A.R. grant from the University of Modena and Reggio Emilia (D.M. and E.O.) and by an “Experimental approaches to the study of evolution” grant from the Department of Animal Biology of the University of Modena and Reggio Emilia (D.M.).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig7

Supplementary Fig. S1 Schematic representation of the experimental design followed to obtain the conditioned media (C-CM and oligo A-CM) and their successive utilization for various experimental procedures (2D-GE two-dimensional gel electrophoresis, C-CM conditioned medium, oligo A-CM medium conditioned for 24 h by cells exposed previously to 10 μM oligomycin A for 2 h) (GIF 64 KB)

High resolution image (TIF 269 KB)

Fig8

Supplementary Fig. S2 Evaluation of cell viability in control and oligomycin A-treated IPLB-LdFB fat body cells at the beginning (time 0) and at the end (24 h) of the conditioning phase. *P<0.05 vs control (GIF 16 KB)

High resolution image (TIF 54.6 KB)

Fig9

Supplementary Fig. S3 Effects of oligo A-CM on untreated IPLB-LdFB cells. At the beginning of the experiment (a), cells present their typical round shape and are large (approximately 20 μm in diameter). Reduction of the cytoplasm is visible after 24 h (b) in the conditioned medium and is clearly observable also after 48 h (c) and 72 h (d) of incubation. During incubation in oligo A-CM, IPLB-LdFB cells gradually lose their flat shape and become more spherical. IPLB-LdFB cells incubated for 24 h (e) and 72 h (f) with C-CM show an increasing number of cytoplasmic blebs that cannot be related either to apoptotic figures or to the treatment since they represent the typical morphology of IPLB-LdFB cells cytocentrifuged 72 h after the last passage in medium, independent of the use of unconditioned medium, C-CM or oligo A-CM. Bar 20 μm (GIF 496 KB)

High resolution image (TIF 12 MB)

Fig10

Supplementary Fig. S4 Light microscopy of semithin sections from IPLB-LdFB cells exposed to C-CM for 24 h (a) or 72 h (c) and to oligo A-CM for 24 h (b) or 72 h (d). Note the progressive shrinkage of the cell surface in the presence of oligo A-CM, as clearly demonstrated by the morphometric analysis (f). Cells grown for 24 h in the presence of 10 nM oligomycin A (e) did not show any of the significant morphological alterations observable in b. Data in f are expressed as mean values ± SE. Bar 30 μm. **P<0.01, ***P<0.001 for oligo A-CM vs C-CM at the same exposure time (GIF 544 KB)

High resolution image (TIF 3.79 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malagoli, D., Boraldi, F., Annovi, G. et al. New insights into autophagic cell death in the gypsy moth Lymantria dispar: a proteomic approach. Cell Tissue Res 336, 107–118 (2009). https://doi.org/10.1007/s00441-008-0748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0748-8

Keywords