Cell and Tissue Research

, 335:191 | Cite as

Vascular endothelium in atherosclerosis

  • Anca V. Sima
  • Camelia S. Stancu
  • Maya Simionescu


Their strategic location between blood and tissue and their constitutive properties allow endothelial cells (EC) to monitor the transport of plasma molecules, by employing bidirectional receptor-mediated and receptor-independent transcytosis and endocytosis, and to regulate vascular tone, cellular cholesterol and lipid homeostasis. These cells are also involved in signal transduction, immunity, inflammation and haemostasis. Cardiovascular risk factors, such as hyperlipaemia/dyslipidaemia trigger the molecular machinery of EC to respond to insults by modulation of their constitutive functions followed by dysfunction and ultimately by injury and apoptosis. The gradual activation of EC consists initially in the modulation of two constitutive functions: (1) permeability, i.e. increased transcytosis of lipoproteins, and (2) biosynthetic activity, i.e. enhanced synthesis of the basement membrane and extracellular matrix. The increased transcytosis and the reduced efflux of β-lipoproteins (βLp) lead to their retention within the endothelial hyperplasic basal lamina as modified lipoproteins (MLp) and to their subsequent alteration (oxidation, glycation, enzymatic modifications). MLp generate chemoattractant and inflammatory molecules, triggering EC dysfunction (appearance of new adhesion molecules, secretion of chemokines, cytokines), characterised by monocyte recruitment, adhesion, diapedesis and residence within the subendothelium. In time, EC in the athero-prone areas alter their net negative surface charge, losing their non-thrombogenic ability, become loaded with lipid droplets and turn into foam cells. Prolonged and/or repeated exposure to cardiovascular risk factors can ultimately exhaust the protective effect of the endogenous anti-inflammatory system within EC. As a consequence, EC may progress to senescence, lose their integrity and detach into the circulation.


Endothelial dysfunction Lipoprotein retention Oxidative stress Inflammation Atherosclerosis 


  1. Adachi H, Tsujimoto M (2006) Endothelial scavenger receptors. Prog Lipid Res 45:379–404PubMedCrossRefGoogle Scholar
  2. Aikawa M, Sugiyama S, Hill CC, Voglic SJ, Rabkin E, Fukumoto Y, Schoen FJ, Witztum JL, Libby P (2002) Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation 106:1390–1396PubMedCrossRefGoogle Scholar
  3. Alipour A, Elte JW, Zaanen HC van, Rietveld AP, Cabezas MC (2007) Postprandial inflammation and endothelial dysfunction. Biochem Soc Trans 35:466–469PubMedCrossRefGoogle Scholar
  4. Asahara T, Murohara T, Sullivan A, Silver M, Zee R van der, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  5. Boulanger CM, Amabile N, Tedgui A (2006) Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 48:180–186PubMedCrossRefGoogle Scholar
  6. Bournazos S, Rennie J, Hart SP, Fox KA, Dransfield I (2008) Monocyte functional responsiveness after PSGL-1-mediated platelet adhesion is dependent on platelet activation status. Arterioscler Thromb Vasc Biol 28:1491–1498PubMedCrossRefGoogle Scholar
  7. Braam B, Verhaar MC (2007) Understanding eNOS for pharmacological modulation of endothelial function: a translational view. Curr Pharm Des 13:1727–1740PubMedCrossRefGoogle Scholar
  8. Brown MD, Jin L, Jien ML, Matsumoto AH, Helm GA, Lusis AJ, Frank JS, Shi W (2004) Lipid retention in the arterial wall of two mouse strains with different atherosclerosis susceptibility. J Lipid Res 45:1155–1161PubMedCrossRefGoogle Scholar
  9. Cai H (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 96:818–822PubMedCrossRefGoogle Scholar
  10. Chadjichristos CE, Kwak BR (2007) Connexins: new genes in atherosclerosis. Ann Med 39:402–411PubMedCrossRefGoogle Scholar
  11. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Stone PH, Feldman CL (2007) Risk stratification of individual coronary lesions using local endothelial shear stress: a new paradigm for managing coronary artery disease. Curr Opin Cardiol 22:552–564PubMedGoogle Scholar
  12. Chen XP, Zhang TT, Du GH (2007) Lectin-like oxidized low-density lipoprotein receptor-1, a new promising target for the therapy of atherosclerosis? Cardiovasc Drug Rev 25:146–161PubMedCrossRefGoogle Scholar
  13. Constantinescu E, Alexandru D, Alexandru V, Raicu M, Simionescu M (2000) Endothelial cell-derived foam cells fail to express adhesion molecules (ICAM-1 and VCAM-1) for monocytes. J Submicrosc Cytol Pathol 32:195–201PubMedGoogle Scholar
  14. Cubbon RM, Rajwani A, Stephen B, Wheatcroft SB (2007) The impact of insulin resistance on endothelial function, progenitor cells and repair. Diabetes Vasc Dis Res 4:103–11CrossRefGoogle Scholar
  15. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA Jr (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA 101:14871–14876PubMedCrossRefGoogle Scholar
  16. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295PubMedGoogle Scholar
  17. Dejana E, Valiron O, Navarro P, Lampugnani MG (1997) Intercellular junctions in the endothelium and the control of vascular permeability. Ann N Y Acad Sci 811:36–43PubMedCrossRefGoogle Scholar
  18. Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rodés-Cabau J, Bertrand OF, Poirier P (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28:1039–1049PubMedCrossRefGoogle Scholar
  19. Dominguez JH, Mehta JL, Li D, Wu P, Kelly KJ, Packer CS, Temm C, Goss E, Cheng L, Zhang S, Patterson CE, Hawes JW, Peterson R (2008) Anti-LOX-1 therapy in rats with diabetes and dyslipidaemia: ablation of renal vascular and epithelial manifestations. Am J Physiol Renal Physiol 294:F110–F119PubMedCrossRefGoogle Scholar
  20. Elahi MM, Naseem KM, Matata BM (2007) Nitric oxide in blood. The nitrosative-oxidative disequilibrium hypothesis on the pathogenesis of cardiovascular disease. FEBS J 274:906–923PubMedCrossRefGoogle Scholar
  21. Filip DA, Nistor A, Bulla A, Radu A, Simionescu M (1987) Cellular events in the development of the valvular atherosclerotic lesions induced by experimental atherosclerosis. Atherosclerosis 67:199–214PubMedCrossRefGoogle Scholar
  22. Flood C, Gustafsson M, Pitas RE, Arnaboldi L, Walzem RL, Boren J (2004) Molecular mechanism for changes in proteoglycan binding on compositional changes of the core and the surface of low-density lipoprotein–containing human apolipoprotein B100. Arterioscler Thromb Vasc Biol 24:564–570PubMedCrossRefGoogle Scholar
  23. Fryer BH, Wang C, Vedantam S, Zhou GL, Jin S, Fletcher L, Simon MC, Field J (2006) cGMP-dependent protein kinase phosphorylates p21-activated kinase (Pak) 1, inhibiting Pak/Nck binding and stimulating Pak/vasodilator-stimulated phosphoprotein association. J Biol Chem 281:11487–11495PubMedCrossRefGoogle Scholar
  24. García-Cardeña G, Gimbrone MA Jr (2006) Biomechanical modulation of endothelial phenotype: implications for health and disease. Handb Exp Pharmacol 176:79–95PubMedCrossRefGoogle Scholar
  25. Georgescu A, Alexandru N, Constantinescu E, Popov D (2006) Effect of gap junction uncoupler heptanol on resistance arteries reactivity in experimental models of diabetes, hyperlipemia and hyperlipemia-diabetes. Vascul Pharmacol 44:513–518PubMedCrossRefGoogle Scholar
  26. Goon PK, Boos CJ, Lip GY (2005) Circulating endothelial cells: markers of vascular dysfunction. Clin Lab 51:531–538PubMedGoogle Scholar
  27. Goua M, Mulgrew S, Frank J, Rees D, Sneddon AA, Wahle KW (2008) Regulation of adhesion molecule expression in human endothelial and smooth muscle cells by omega-3 fatty acids and conjugated linoleic acids: involvement of the transcription factor NF-kappaB? Prostaglandins Leukot Essent Fatty Acids 78:33–43PubMedCrossRefGoogle Scholar
  28. Hansson GK, Robertson AK, Söderberg-Nauclér C (2006) Inflammation and atherosclerosis. Annu Rev Pathol 1:297–329PubMedCrossRefGoogle Scholar
  29. Heeneman S, Sluimer JC, Daemen MJ (2007) Angiotensin-converting enzyme and vascular remodeling. Circ Res 101:441–454PubMedCrossRefGoogle Scholar
  30. Hurt-Camejo E, Camejo G, Sartipy P (2000) Phospholipase A2 and small, dense low-density lipoprotein. Curr Opin Lipidol 11:465–471PubMedCrossRefGoogle Scholar
  31. Jones SP, Bolli R (2006) The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 40:16–23PubMedCrossRefGoogle Scholar
  32. Lavi S, Lavi R, McConnell JP, Lerman LO, Lerman A (2007) Lipoprotein-associated phospholipase A(2): review of its role as a marker and a potential participant in coronary endothelial dysfunction. Mol Diagn Ther 11:219–226PubMedGoogle Scholar
  33. Li D, Liu L, Chen H, Sawamura T, Ranganathan S, Mehta JL (2003) LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation 107:612–617PubMedCrossRefGoogle Scholar
  34. Manea A, Manea SA, Gafencu AV, Raicu M, Simionescu M (2008) AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit. Arterioscler Thromb Vasc Biol 28:878–885PubMedCrossRefGoogle Scholar
  35. Mehrabi MR, Sinzinger H, Ekmekcioglu C, Tamaddon F, Plesch K, Glogar HD, Maurer G, Stefenelli T, Lang IM (2000) Accumulation of oxidized LDL in human semilunar valves correlates with coronary atherosclerosis. Cardiovasc Res 45:874–882PubMedCrossRefGoogle Scholar
  36. Mehta D, Malik A (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367PubMedCrossRefGoogle Scholar
  37. Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702–1711PubMedCrossRefGoogle Scholar
  38. Mora R, Lupu F, Simionescu N (1989) Cytochemical localization of beta-lipoproteins and their components in successive stages of hyperlipidemic atherogenesis of rabbit aorta. Atherosclerosis 79:183–195PubMedCrossRefGoogle Scholar
  39. Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES (2005) The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 16:507–511PubMedCrossRefGoogle Scholar
  40. Nistor A, Bulla A, Filip DA, Radu A (1987) The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68:159–173PubMedCrossRefGoogle Scholar
  41. Öörni K, Posio P, Ala-Korpela M, Jauhiainen M, Kovanen P (2005) Sphingomyelinase induces aggregation and fusion of small VLDL and IDL particles and increases their retention to human arterial proteoglycans. Arterioscler Thromb Vasc Biol 25:1678–1683PubMedCrossRefGoogle Scholar
  42. Orr AW, Stockton R, Simmers MB, Sanders JM, Sarembock IJ, Blackman BR, Schwartz MA (2007) Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. J Cell Biol 176:719–727PubMedCrossRefGoogle Scholar
  43. Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 17:48–54PubMedCrossRefGoogle Scholar
  44. Pennathur S, Heinecke JW (2007) Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 7:257–264PubMedCrossRefGoogle Scholar
  45. Presta M, Camozzi M, Salvatori G, Rusnati M (2007) Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med 11:723–738PubMedCrossRefGoogle Scholar
  46. Ritman EL, Lerman A (2007) The dynamic vasa vasorum. Cardiovasc Res 75:649–658PubMedCrossRefGoogle Scholar
  47. Schmidt TS, Alp NJ (2007) Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci 113:47–63PubMedGoogle Scholar
  48. Schwartz SM, Galis ZS, Rosenfeld ME, Falk E (2007) Plaque rupture in humans and mice. Arterioscler Thromb Vasc Biol 27:705–713PubMedCrossRefGoogle Scholar
  49. Schwenke DC, StClair RW (1993) Influx, efflux, and accumulation of LDL in normal arterial areas and atherosclerotic lesions of white Carneau pigeons with naturally occurring and cholesterol-aggravated aortic atherosclerosis. Arterioscler Thromb 13:1368–1381PubMedGoogle Scholar
  50. Sima A, Stancu C (2001) Statins: mechanism of action and effects. J Cell Mol Med 5:378–387PubMedCrossRefGoogle Scholar
  51. Sima A, Bulla A, Simionescu N (1990) Experimental obstructive coronary atherosclerosis in the hyperlipidemic hamster. J Submicrosc Cytol Pathol 22:1–16PubMedGoogle Scholar
  52. Simionescu M (2007) Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27:266–274PubMedCrossRefGoogle Scholar
  53. Simionescu M, Antohe F (2006) Functional ultrastructure of the vascular endothelium: changes in various pathologies. Handb Exp Pharmacol 176:41–69PubMedCrossRefGoogle Scholar
  54. Simionescu M, Simionescu N, Silbert JE, Palade GE (1991) Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol 90:614–621CrossRefGoogle Scholar
  55. Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis: accumulation of extracellular cholesterol rich liposomes in the arterial intima and cardiac valves of hyperlipidemic rabbits. Am J Pathol 123:85–101Google Scholar
  56. Steinberg D (2005) An interpretive history of the cholesterol controversy. III. Mechanistically defining the role of hyperlipidaemia. J Lipid Res 46:2037–2051PubMedCrossRefGoogle Scholar
  57. Steinberg D (2006) An interpretive history of the cholesterol controversy. Part V. The discovery of the statins and the end of the controversy. J Lipid Res 47:1339–1351PubMedCrossRefGoogle Scholar
  58. Tabas I, Williams KJ, Borén J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844PubMedCrossRefGoogle Scholar
  59. Tirziu D, Dobrian A, Tasca C, Simionescu M, Simionescu N (1995) Intimal thickenings of human aorta contain modified reassembled lipoproteins. Atherosclerosis 112:101–114PubMedCrossRefGoogle Scholar
  60. Van den Berg BM, Spaan JA, Rolf TM, Vink H (2006) Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol 290:H915–H920PubMedCrossRefGoogle Scholar
  61. Weber C, Schober A, Zernecke A (2004) Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol 24:1997–2008PubMedCrossRefGoogle Scholar
  62. Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G (2006) Circulating CD31/annexin V-apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 26:112–116PubMedCrossRefGoogle Scholar
  63. Williams KJ, Tabas I (2005) Lipoprotein retention and clues for atheroma regression. Arterioscler Thromb Vasc Biol 25:1536–1540PubMedCrossRefGoogle Scholar
  64. Xu Q (2007) Progenitor cells in vascular repair. Curr Opin Lipidol 18:534–539PubMedCrossRefGoogle Scholar
  65. Zheng XY, Liu L (2007) Remnant-like lipoprotein particles impair endothelial function: direct and indirect effects on nitric oxide synthase. J Lipid Res 48:1673–1680PubMedCrossRefGoogle Scholar
  66. Zou MH (2007) Peroxynitrite and protein tyrosine nitration of prostacyclin synthase. Prostaglandins Other Lipid Mediat 82:119–127PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Anca V. Sima
    • 1
  • Camelia S. Stancu
    • 1
  • Maya Simionescu
    • 1
  1. 1.Institute of Cellular Biology and Pathology “Nicolae Simionescu”BucharestRomania

Personalised recommendations