Abstract
The siliceous spicules of sponges (Porifera) are synthesized by the enzyme silicatein. This protein and its gene have been identified so far in the Demospongiae, e.g., Tethya aurantium and Suberites domuncula. In the Hexactinellida, the second class of siliceous sponges, the mechanism of synthesis of the largest bio-silica structures on Earth remains obscure. Here, we describe the morphology of the spicules (diactines and stauractines) of the hexactinellid Crateromorpha meyeri. These spicules are composed of silica lamellae concentrically arranged around a central axial canal and contain proteinaceous sheaths (within the siliceous mantel) and proteinaceous axial filaments (within the axial canal). The major protein in the spicules is a 24-kDa protein that strongly reacts with anti-silicatein antibodies in Western blots. Its cDNA has been successfully cloned; the deduced hexactinellid silicatein comprises, in addition to the characteristic catalytic triad amino acids Ser-His-Asn and the “conventional” serine cluster, a “hexactinellid C. meyeri-specific” Ser cluster. We show that anti-silicatein antibodies react specifically with the proteinaceous matrix of the C. meyeri spicules. The characterization of silicatein at the genetic level should contribute to an understanding of the molecular/biochemical mechanism of spiculogenesis in Hexactinellida. These data also indicate that silicatein is an autapomorphic molecule common to both classes of siliceous sponges.
Similar content being viewed by others
References
Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzel P (2005) Skeleton of Euplectella sp.: structural hierarchy from nanoscale to the macroscale. Science 309:275–278
Barrett AJ, Rawlings ND, Woessner JF (2002) Handbook of proteolytic enzymes. Academic Press, Amsterdam
Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365
Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76:217–246
Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in protein. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington DC, pp 345–352
Deane CM, Blundell TL (2001) CODA: a combined algorithm for predicting the structurally variable regions of protein models. Protein Sci 10:599–612
Eckert C, Janussen D (2005) Die Glasschwämme der Sagami-Bucht und ihre Erforschung. Natur und Museum (Frankfurt) 135:105–116
Ehrlich H, Heinemann S, Heinemann C, Simon P, Bazhenov VV, Shapkin NP, Born R, Tabachnick KR, Hanke T, Worch H (2008) Nanostructural organization of maturally occurring composites. Part I. Silica-collagen-based biocomposites. J Nanomat. doi:10.1155/2008/623838
Felsenstein J (1993) PHYLIP, ver. 3.5. University of Washington, Seattle
Hoffmann PA, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155
Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11:447–455
Kaluzhnaya OV, Belikov SI, Schröder HC, Wiens M, Giovine M, Krasko A, Müller IM, Müller WEG (2005a) Dynamics of skeletal formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I. Biological and biochemical studies. Naturwissenschaften 92:128–133
Kaluzhnaya OV, Belikov SI, Schröder HC, Rothenberger M, Zapf S, Kaandorp JA, Borejko A, Müller IM, Müller WEG (2005b) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Naturwissenschaften 92:134–138
Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887
Kruse M, Leys S, Müller IM, Müller WEG (1998) Phylogenetic position of the Hexactinellida within the phylum Porifera based on amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728
Müller WEG (2001) How was the metazoan threshold crossed: the hypothetical Urmetazoa. Comp Biochem Physiol [A] 129:433–460
Müller WEG, Krasko A, Le Pennec G, Steffen R, Ammar MSA, Wiens M, Müller IM, Schröder HC (2003) Molecular mechanism of spicule formation in the demosponge Suberites domuncula: silicatein - collagen - myotrophin. Progr Mol Subcell Biol 33:195–222
Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) The bauplan of the Urmetazoa: the basis of the genetic complexity of Metazoa using the siliceous sponges [Porifera] as living fossils. Int Rev Cytol 235:53–92
Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297
Müller WEG, Boreiko A, Wang X, Belikov SI, Wiens M, Grebenjuk VA, Schloßmacher U, Schröder HC (2007a) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71
Müller WEG, Li J, Schröder HC, Qiao L, Wang X (2007b) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4:219–232
Müller WEG, Schloßmacher U, Eckert C, Krasko A, Boreiko A, Ushijima H, Wolf SE, Tremel W, Schröder HC (2007c) Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes). Eur J Cell Biol 86:473–487
Müller WEG, Wang X, Belikov SI, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir MN, Müller IM, Schröder HC (2007d) Formation of siliceous spicules in demosponges: example Suberites domuncula. In: Bäuerlein E (ed) Handbook of biomineralization, vol 1: biological aspects and structure formation. Wiley-VCH, Weinheim, pp 59–82
Müller WEG, Eckert C, Kropf K, Wang X, Schloßmacher U, Seckert C, Wolf SE, Tremel W, Schröder HC (2007e) Formation of the giant spicules of the deep sea hexactinellid Monorhaphis chuni (Schulze 1904): electron microscopical and biochemical studies. Cell Tissue Res 329:363–378
Müller WEG, Boreiko A, Schloßmacher U, Wang X, Tahir MN, Tremel W, Brandt D, Kaandorp JA, Schröder HC (2007f) Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials 28:4501–4511
Müller WEG, Boreiko A, Schloßmacher U, Wang X, Eckert C, Kropf K, Li J, Schröder HC (2008a) Identification of a silicatein(-related) protease in the giant spicules of the deep sea hexactinellid Monorhaphis chuni. J Exp Biol 211:300–309
Müller WEG, Schloßmacher U, Wang X, Boreiko A, Brandt D, Wolf SE, Tremel W, Schröder HC (2008b) Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica-polymerase and silica-esterase). FEBS J 275:362–370
Müller WEG, Wang X, Kropf K, Ushijima H, Geurtsen W, Eckert C, Tahir MN, Tremel W, Boreiko A, Schloßmacher U, Li J, Schröder HC (2008c) Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. J Struct Biol 161:188–203
Nicholas KB, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Version 1.1.004. Distributed by the author; cris.com/×ketchup/genedoc.shtml
Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99
Reitner J (1992) Coralline Spongien. Der Versuch einer phylogenetisch-taxonomischen Analyse. Berl Geowiss Abh 1:1–352
Reitner J, Wörheide G (2002) Non-lithistid Demospongiae-origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper JNA, Soest RWM van (eds) Systema porifera: a guide to the classification of sponges. Kluwer Academic/Plenum, New York, pp 52–70
Robinson PN (2007) A Java program for drawing Ramachandran plots. From: peter.robinson@charite.de
Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815
Sandford F (2003) Physical and chemical analysis of the siliceous skeletons in six sponges of the two groups (Demospongiae and Hexactinellida). Microsc Res Tech 62:336–355
Schäcke H, Müller IM, Müller WEG (1994) Tyrosine kinase from the marine sponge Geodia cydonium. In: Müller WEG (ed) Use of aquatic invertebrates as tools for monitoring of environmental hazards. Fischer, Stuttgart, pp 201–211
Schröder HC, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665–673
Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009
Schröder HC, Brandt D, Schloßmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007a) Enzymatic production of biosilica-glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94:39–359
Schröder HC, Natalio F, Shukoor I, Tremel W, Schloßmacher U, Wang X, Müller WEG (2007b) Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. J Struct Biol 159:325–334
Schultze M (1860) Die Hyalonemen. Adolph Marcus, Bonn
Schulze FE (1887) Report on the Hexactinellida collected by H.M.S. Challenger during the years 1873–76. In: Thomson CW, Murray J (eds) Report of the scientific results of the voyage of H.M.S. Challenger during the years 1873–76, vol LIII. Eyre & Spottiswoode, London
Schulze FE (1904) Hexactinellida. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition, vol 4. Fischer, Jena
Schulze P (1925) Zum morphologischen Feinbau der Kieselschwammnadeln. Z Morphol Ökol Tiere 4:615–625
Schütze J, Custodio MR, Efremova SM, Müller IM, Müller WEG (1999) Evolutionary relationship of Metazoa within the eukaryotes based on molecular data from Porifera. Proc R Soc Lond [Biol] 266:63–73
Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238
Taskiran D, Taskiran E, Yercan H, Kutay FZ (1999) Quantification of total collagen in rabbit tendon by the Sirius Red method. Turk J Med Sci 29:7–9
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
Uriz MJ, Turon X, Becerro MA, Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, biological functions. Microsc Res Tech 62:279–299
Vriend G, What IF (1990) A molecular modeling and drug design program. J Mol Graph 8:52–56
Walker G (2003) Snowball Earth: the story of the great global catastrophe that spawned life as we know it. Crown, New York
Wang X, Wang Y (2006) An introduction to the study on natural characteristics of sponge spicules and bionic applications. Adv Earth Sci 21:37–42
Wang X, Li J, Qiao L, Schröder HC, Eckert C, Kropf K, Wang Y, Feng QL, Müller WEG (2007) Structure and characteristics of giant spicules of the deep sea hexactinellid sponges of the genus Monorhaphis (Hexactinellida: Amphidiscosida: Monorhaphididae). Acta Zool Sinica 53:557–569
Weaver JC, Morse DE (2003) Molecular biology of demosponge axial filaments and their roles in biosilicification. Microsc Res Tech 62:356–367
Weaver JC, Aizenberg J, Fantner GE, Kisailus D, Woesz A, Allen P, Fields K, Porter MJ, Zok FW, Hansma PK, Fratzl P, Morse DE (2007) Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J Struct Biol 158:93–106
Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216:229–242
Zhao B, Janson CA, Amegadzie BY, D’Alessio K, Griffin C, Hanning CR, Jones C, Kurdyla J, McQueney M, Qiu X, Smith WW, Abdel-Meguid SS (1997) Crystal structure of human osteoclast cathepsin K complex with E-64. Nat Struct Biol 4:109–111
Acknowledgements
We thank Mr. G. Glasser (Research group “Surface Chemistry”, Prof. H.J. Butt and Dr. I. Lieberwirth; Max Planck Institute for Polymer Research, Mainz) for excellent assistance with the electron-microscopic analysis. The investigated material and photographs of the animals were kindly supplied by Dr. Dorthe Janussen (Department of Marine Evertebrates I, Research Institute and Natural Museum Senckenberg, Frankfurt/Main). Thanks are also due to Mr. C. Eckert (Institut für Physiologische Chemie, University of Mainz) for help during the collection of the material.
Author information
Authors and Affiliations
Corresponding author
Additional information
Sequences (cDNAs) from Crateromorpha meyeri have been deposited (EMBL/GenBank) as follows: for silicatein (SILCA_CRAME; accession no. AM920776), for cathepsin-like protein 1 (catl1_CRAME; AM904719), for cathepsin-like protein 2 (catl2_CRAME; AM904720), for cathepsin-like protein 3 (catl3_CRAME; AM904721), and for cathepsin-like protein 4 (catl4_CRAME; AM904722).
This work was supported by grants from the Deutsche Forschungsgemeinschaft/Wi 2116/2-2), the Bundesministerium für Bildung und Forschung, Germany (project: Center of Excellence BIOTECmarin), the Basic Science Research Program in China (no. 200607CSJ05), the China International Science and Technology Cooperation Program (no. 20071395), and the International Human Frontier Science Program.
Rights and permissions
About this article
Cite this article
Müller, W.E.G., Wang, X., Kropf, K. et al. Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333, 339–351 (2008). https://doi.org/10.1007/s00441-008-0624-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00441-008-0624-6