Skip to main content

Advertisement

Log in

Small interfering RNA of alkaline phosphatase inhibits matrix mineralization

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

To investigate the cascade of matrix mineralization, cells expressing high and low alkaline phosphatase (ALP) were separated from human osteoblast-like (HOS) cells by fluorescence-activated cell sorting with an ALP antibody. After these cells had been recloned from single cells and then cultured under osteogenic conditions, high-ALP-expressing HOS (H-HOS) cells showed matrix mineralization, but low-ALP-expressing HOS (L-HOS) cells did not. The interaction among osteogenic-related genes, such as runt-related transcription factor 2 (RUNX2), collagen type I α1 chain (COL1A1), tissue non-specific ALP, and osteocalcin (OCN), is well known as being related to matrix mineralization. Quantitative real-time polymerase chain reaction revealed that the gene expression of ALP was higher in H-HOS cells than in L-HOS, whereas the gene expression of RUNX2, COL1A1, and OCN was lower in H-HOS cells than in L-HOS cells. When small interfering RNAs (siRNAs) of these osteogenic-related genes were introduced into H-HOS cells by transfection, only ALP siRNA inhibited matrix mineralization. Furthermore, the expression of not only the ALP gene, but also the COL1A1 and RUNX2 genes was influenced by the inhibition of ALP, although the expression of OCN was not affected by the inhibition of ALP. We have been able to confirm that the ALP gene is a strong candidate as the trigger of matrix mineralization. These results indicate the usefulness of cloned osteogenic cells in investigating the molecular mechanisms of matrix mineralization, the function of which can be modulated by using a variety of siRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ducy P, Karsenty G (1995) Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15:1858–1869

    PubMed  CAS  Google Scholar 

  • Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13:1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Zannettino AC, Graves SE, Ohta S, Hay SJ, Simmons PJ (1999) Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J Bone Miner Res 14:47–56

    Article  PubMed  CAS  Google Scholar 

  • Hassan MQ, Tare R, Lee SH, Mandeville M, Weiner B, Montecino M, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2007) HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol Cell Biol 27:3337–3352

    Article  PubMed  CAS  Google Scholar 

  • Heath DJ, Downes S, Verderio E, Griffin M (2001) Characterization of tissue transglutaminase in human osteoblast-like cells. J Bone Miner Res 16:1477–1485

    Article  PubMed  CAS  Google Scholar 

  • Hoelters J, Ciccarella M, Drechsel M, Geissler C, Gulkan H, Bocker W, Schieker M, Jochum M, Neth P (2005) Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J Gene Med 7:718–728

    Article  PubMed  CAS  Google Scholar 

  • Ikeda R, Yoshida K, Tsukahara S, Sakamoto Y, Tanaka H, Furukawa K, Inoue I (2005) The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem 280:8523–8530

    Article  PubMed  CAS  Google Scholar 

  • Iwata T, Kawamoto T, Sasabe E, Miyazaki K, Fujimoto K, Noshiro M, Kurihara H, Kato Y (2006) Effects of overexpression of basic helix-loop-helix transcription factor Dec1 on osteogenic and adipogenic differentiation of mesenchymal stem cells. Eur J Cell Biol 85:423–431

    Article  PubMed  CAS  Google Scholar 

  • Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95:445–453

    Article  PubMed  CAS  Google Scholar 

  • Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233–1239

    Article  PubMed  CAS  Google Scholar 

  • Kotobuki N, Hirose M, Funaoka H, Ohgushi H (2003) Flowcytometric analysis of human osteoblastic cells expressing bone specific alkaline phosphatase. Bioceramics 15:729–731

    Google Scholar 

  • Kotobuki N, Hirose M, Funaoka H, Ohgushi H (2004a) Enhancement of in vitro osteoblastic potential after selective sorting of osteoblasts with high alkaline phosphatase activity from human osteoblast-like cells. Cell Transplant 13:377–383

    Article  PubMed  Google Scholar 

  • Kotobuki N, Hirose M, Takakura Y, Ohgushi H (2004b) Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs 28:33–39

    Article  PubMed  Google Scholar 

  • Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y, Ohgushi H (2005) Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng 11:663–673

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Malaval L, Gupta AK, Aubin JE (1994) Simultaneous detection of multiple bone-related mRNAs and protein expression during osteoblast differentiation: polymerase chain reaction and immunocytochemical studies at the single cell level. Dev Biol 166:220–234

    Article  PubMed  CAS  Google Scholar 

  • McAllister RM, Gardner MB, Greene AE, Bradt C, Nichols WW, Landing BH (1971) Cultivation in vitro of cells derived from a human osteosarcoma. Cancer 27:397–402

    Article  PubMed  CAS  Google Scholar 

  • Millington-Ward S, McMahon HP, Allen D, Tuohy G, Kiang AS, Palfi A, Kenna PF, Humphries P, Farrar GJ (2004) RNAi of COL1A1 in mesenchymal progenitor cells. Eur J Hum Genet 12:864–866

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE (2007) Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res 313:22–37

    Article  PubMed  CAS  Google Scholar 

  • Stewart K, Monk P, Walsh S, Jefferiss CM, Letchford J, Beresford JN (2003) STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res 313:281–290

    Article  PubMed  CAS  Google Scholar 

  • Tafech A, Bassett T, Sparanese D, Lee CH (2006) Destroying RNA as a therapeutic approach. Curr Med Chem 13:863–881

    Article  PubMed  CAS  Google Scholar 

  • Torii Y, Hitomi K, Yamagishi Y, Tsukagoshi N (1996) Demonstration of alkaline phosphatase participation in the mineralization of osteoblasts by antisense RNA approach. Cell Biol Int 20:459–464

    Article  PubMed  CAS  Google Scholar 

  • Uchimura E, Machida H, Kotobuki N, Kihara T, Kitamura S, Ikeuchi M, Hirose M, Miyake J, Ohgushi H (2003) In-situ visualization and quantification of mineralization of cultured osteogenetic cells. Calcif Tissue Int 73:575–583

    Article  PubMed  CAS  Google Scholar 

  • Wall NR, Shi Y (2003) Small RNA: can RNA interference be exploited for therapy? Lancet 362:1401–1403

    Article  PubMed  CAS  Google Scholar 

  • Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millan JL (2000) Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15:1879–1888

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Okamura H, Amorim BR, Ozaki A, Tanaka H, Morimoto H, Haneji T (2005) Double-stranded RNA-dependent protein kinase is required for bone calcification in MC3T3-E1 cells in vitro. Exp Cell Res 311:117–125

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Boachie-Adjei O, Rawlins BA, Frenkel B, Boskey AL, Ivashkiv LB, Blobel CP (2007) A novel regulatory role for SDF-1 signaling in BMP2-osteogenic differentiation of mesenchymal C2C12 cells. J Biol Chem 282:18676-18685

    Article  PubMed  CAS  Google Scholar 

  • Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG (2002) The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 277:23934–23941

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Hirose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotobuki, N., Matsushima, A., Kato, Y. et al. Small interfering RNA of alkaline phosphatase inhibits matrix mineralization. Cell Tissue Res 332, 279–288 (2008). https://doi.org/10.1007/s00441-008-0580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0580-1

Keywords

Navigation