Skip to main content

Advertisement

Log in

Avian pelvis originates from lateral plate mesoderm and its development requires signals from both ectoderm and paraxial mesoderm

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The pelvic girdle is composed of three skeletal elements: ilium, pubis, and ischium. In comparison with other parts of the postcranial skeleton, its development is not well known to date. To elucidate the embryonic origin of the avian pelvic girdle and the signaling centers that control its development, we have performed extirpation and quail-to-chick grafting experiments. The results reveal that the entire pelvic girdle originates from the somatopleure at somite levels 26 to 35. No somitic cell contribution to skeletal elements of the pelvis has been detected. Removal of the surface ectoderm covering the lateral plate mesoderm has revealed that ectodermal signals control the development of the pelvic girdle, especially the formation of the pubis and ischium. The impaired development of the ischium and pubis correlates with the downregulation of Pax1 and Alx4, two transcription factors that control the normal development of the ischium and pubis. Although of somatopleural origin, the development of the ilium depends on somitic signals. Insertion of a barrier between somites and somatopleure disrupts the expression of Emx2 and prevents normal development of the ilium but does not affect the expression of Pax1 or Alx4 and the development of the pubis and ischium. Thus, the development of the ilium, but not of the pubis and ischium, depends on somitic and ectodermal signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baleeva NV (2001) Formation of the scapular part of the pectoral girdle in anuran larvae. Russ J Herpetol 8:195–204

    Google Scholar 

  • Bardeen CR, Lewis WH (1901) Development of the limbs, body-wall and back in man. Am J Anat 1:1–35

    Article  Google Scholar 

  • Baumel JJ, King AS, Lucas AM, Breazile JE, Evans HE (1979) Nomina Anatomica Avium (an annotated anatomical dictionary of birds). Academic Press, London

    Google Scholar 

  • Beauchemin M, Del Rio-Tsonis K, Tsonis PA, Tremblay M, Savard P (1998) Graded expression of Emx-2 in the adult newt limb and its corresponding regeneration blastema. J Mol Biol 279:501–511

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Ensini M, Gulisano M, Lumsden A (2001)Dynamic domains of gene expression in the early avian forebrain. Dev Biol 236:76–88

    Article  PubMed  CAS  Google Scholar 

  • Burck H-C (1988) Histologische Technik. Thieme, Stuttgart

    Google Scholar 

  • Burke AC (1991a) The development and evolution of the turtle body plan: inferring intrinsic aspects of the evolutionary process from experimental embryology. Am Zool 31:616–627

    Google Scholar 

  • Burke AC (1991b) Proximal elements of the vertebrate limb: evolutionary and developmental origin of the pectoral girdle. In: Hinchliffe JR (ed) Developmental patterning of the vertebrate limb. Plenum, New York, pp 385–394

    Google Scholar 

  • Chevallier A (1977) Origine des ceintures scapulaires et pelviennes chez l’embryon d’oiseau. J Embryol Exp Morphol 42:275–292

    Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191:381–396

    Article  PubMed  CAS  Google Scholar 

  • Drennan MR (1927) The homologies of the arm and leg. Anat Rec 35:113–128

    Article  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  • Huang R, Zhi Q, Patel K, Wilting J, Christ B (2000) Dual origin and segmental organization of the avian scapula. Development 127:3789–3794

    PubMed  CAS  Google Scholar 

  • Jin EJ, Lee SY, Choi Ya, Jung JC, Bang OK, Kang SS (2006) BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt7a-pathway. Mol Cells 3:353–359

    Google Scholar 

  • Johnson A (1893) On the development of the pelvic girdle and skeleton of the hind-limb in the chick. Q J Microsc Sci 23:399–411

    Google Scholar 

  • Kantaputra PN, Tanpaiboon P (2005) A newly recognized syndrome involving limbs, pelvis, and genital organs or a variant of Al-Awadi/Raas-Rotschild Syndrome? Am J Med Genet 132A:63–67

    Article  PubMed  Google Scholar 

  • Kengaku M, Capdevila J, Rodriguez-Esteban C, De La Pena J, Johnson RL, Izpisua Belmonte JC, Tabin C (1998) Distinct WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud. Science 280:1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Kieny M, Mauger A, Sengel P (1972) Early regionalization of the somitic mesoderm as studied by the development of the axial skeleton on the chick embryo. Dev Biol 28:142–161

    Article  PubMed  CAS  Google Scholar 

  • Kuijper S, Beverdam A, Kroon C, Brouwer A, Candille S, Barsh G, Meijlink F (2005) Genetics of shoulder girdle formation: roles of Tbx15 and aristaless-like genes. Development 132:1601–1610

    Article  PubMed  CAS  Google Scholar 

  • Laing NG (1982) Abnormal development of vertebrae in paralyzed chick embryos. J Morphol 173:179–184

    Article  PubMed  CAS  Google Scholar 

  • Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ (2002) Expression of Cre recombinase in the developing mouse limb bud driven by a Prx1 enhancer. Genesis 33:77–80

    Article  PubMed  CAS  Google Scholar 

  • Malashichev YB (2006) Structure and development of the sacro-pelvic complex in Amniota. St. Petersburg University Press, St. Petersburg

    Google Scholar 

  • Malashichev YB, Borkhvardt VG, Christ B, Scaal M (2005) Differential regulation of avian pelvic girdle by the limb field ectoderm. Anat Embryol 210:187–197

    Article  PubMed  Google Scholar 

  • Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD, McMahon AP, Koentges G (2005) Neural crest origins of the neck and shoulder. Nature 436:347–355

    Article  PubMed  CAS  Google Scholar 

  • Mehnert E (1887) Untersuchungen über die Entwicklung des Os pelvis der Vögel. Morphol Jahrb 13:259–295

    Google Scholar 

  • Narita T, Sasaoke S, Udagawa K, Ohyama T, Wada N, Nishimatsu S-i, Takada S, Nohno T (2005) Wnt10a is involved in AER formation during chick limb development. Dev Dyn 233:282–287

    Article  PubMed  CAS  Google Scholar 

  • Nieto MA, Patel K, Wilkinson DG (1996) In situ hybridization analysis of chick embryos in whole mount and tissue sections. Methods Cell Biol 51:219–235

    Article  PubMed  CAS  Google Scholar 

  • Olney RS, Hoyme HE, Roche F, Ferguson K, Hintz S, Madan A (2001) Limb/pelvis hypoplasia/aplasia with skull defect (Schinzel phocomelia): distinctive features and prenatal detection. Am J Med Genet 103:295–301

    Article  PubMed  CAS  Google Scholar 

  • Ordahl CP, Christ B (1998) Avian somite transplantation: a review of basic methods. Methods Cell Biol 52:3–27

    Google Scholar 

  • Osburn RC (1907) Observations on the origin of the paired limbs of vertebrates. Am J Anat 7:171–194

    Article  Google Scholar 

  • Parr BA, McMahon AP (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374:350–353

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini M, Pantano S, Fumi MP, Lucchini F, Forabosco A (2001) Agenesis of the scapula in Emx2 homozygous mutants. Dev Biol 232:149–156

    Article  PubMed  CAS  Google Scholar 

  • Pröls F, Ehehalt F, Rodriguez-Niedenfuhr M, He L, Huang R, Christ B (2004) The role of Emx2 during scapula development. Dev Biol 275:315–324

    Article  PubMed  CAS  Google Scholar 

  • Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessel TM, Tabin C (1995) Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83:631–640

    Article  PubMed  CAS  Google Scholar 

  • Romer AS (1956) Osteology of the Reptilia. University of Chicago Press, Chicago

    Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung development. Nat Genet 21:138–141

    Article  PubMed  CAS  Google Scholar 

  • Selleri L, Depew MJ, Jacobs Y, Chanda SK, Tsang KY, Cheah KSE, Rubinstein JLR, O’Gorman S, Cleary ML (2001) Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development 128:3543–3557

    PubMed  CAS  Google Scholar 

  • Serra J (1946) Histochemical tests for protein and amino acids: the characterization of basic proteins. Stain Techn 21:5–18

    Google Scholar 

  • Spurling RG (1923) The effect of extirpation of the posterior limb bud on the development of the limb and pelvic girdle in chick embryos. Anat Rec 26:41–56

    Article  Google Scholar 

  • Timmons PM, Wallin J, Rigby PWJ, Balling R (1994) Expression and function of Pax 1 during development of the pectoral girdle. Development 120:2773–2785

    PubMed  CAS  Google Scholar 

  • Vickaryous MK, Hall BK (2006) Homology of the reptilian coracoid and a reappraisal of the evolution and development of the amniote pectoral apparatus. J Anat 208:263–285

    Article  PubMed  Google Scholar 

  • Wang B, He L, Ehehalt F, Geetha-Loganathan P, Nimmagadda S, Christ B, Scaal M, Huang R (2005) The formation of the avian scapula blade takes place in the hypaxial domain of the somites and requires somatopleure-derived BMP signals. Dev Biol 287:11–18

    Article  PubMed  CAS  Google Scholar 

  • Wilm B, Dahl E, Peters H, Balling R, Imai K (1998) Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc Natl Acad Sci USA 95:8692–8697

    Article  PubMed  CAS  Google Scholar 

  • Woods CG, Stricker S, Seeman P, Stern R, Cox J, Sherridan E, Roberts E, Springell K, Scott S, Karbani G, Sharif SM, Toomes C, Bond J, Kumar D, Al-Gazali L, Mundlos S (2006) Mutations in Wnt7a cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rotschild/Schinzel phocomelia syndrome. Am J Human Genet 79:402–408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ulrike Pein, Ellen Gimbel, and Günther Frank for excellent technical assistance, and Ann C. Burke, Martin Scaal, Ketan Patel, and Petr Valašek for extensive discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yegor Malashichev or Felicitas Pröls.

Additional information

This work was supported by the Alexander von Humboldt Stiftung, by grants from the President of the Russian Federation and by the Russian Foundation for Basic Research (a06-04-49721) to Y.M., and by the Deutsche Forschungsgemeinschaft (SFB 592 A1) to B.C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malashichev, Y., Christ, B. & Pröls, F. Avian pelvis originates from lateral plate mesoderm and its development requires signals from both ectoderm and paraxial mesoderm. Cell Tissue Res 331, 595–604 (2008). https://doi.org/10.1007/s00441-007-0556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0556-6

Keywords

Navigation