Skip to main content

GDNF prevents TGF-β-induced damage of the plasma membrane in cerebellar granule neurons by suppressing activation of p38-MAPK via the phosphatidylinositol 3-kinase pathway

Abstract

Transforming growth factor-β (TGF-β) and glial-cell-line-derived neurotrophic factor (GDNF) have been shown to synergize in several paradigms of neuronal survival. We have previously shown that cerebellar granule neurons (CGN) degenerate in low potassium via ERK1/2 (extra-cellular-regulated kinase)-dependent plasma membrane (PM) damage and caspase-3-dependent DNA fragmentation. Here, we have investigated the putative synergistic function of GDNF and TGF-β in CGN degeneration. GDNF alone prevents low-potassium-induced caspase-3 activation and DNA fragmentation but does not affect either low-potassium-induced ERK activation or PM damage. TGF-β alone does not affect low-potassium-induced DNA fragmentation but potentiates low-potassium-induced PM damage. This effect of TGF-β is independent of ERK1/2 activation but dependent on p38-MAPK (mitogen-activated protein kinase) activation. When co-applied with TGF-β, GDNF paradoxically antagonizes TGF-β-induced potentiation of PM damage by inhibiting TGF-β-induced p38-MAPK activation. In addition, PI3K (phosphatidylinositol 3-kinase) inhibitors abolish the GDNF effect. This study thus demonstrates a differential mechanism of action of GDNF and TGF-β on CGN degeneration. GDNF inhibits caspase-3-dependent DNA fragmentation but does not affect ERK-dependent PM damage. However, GDNF can attenuate TGF-β-induced p38-MAPK-dependent PM damage via the PI3K pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Reference

  • Böttner M, Unsicker K, Suter-Crazzolara C (1996) Expression of TGF-beta type II receptor mRNA in the CNS. Neuroreport 7:2903–2907

    PubMed  Article  Google Scholar 

  • Böttner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 75:2227–2240

    PubMed  Article  Google Scholar 

  • Burazin TC, Gundlach AL (1999) Localization of GDNF/neurturin receptor (c-ret, GFRalpha-1 and alpha-2) mRNAs in postnatal rat brain: differential regional and temporal expression in hippocampus, cortex and cerebellum. Brain Res Mol Brain Res 73:151–171

    PubMed  Article  CAS  Google Scholar 

  • Chalazonitis A, Kalberg J, Twardzik DR, Morrison RS, Kessler JA (1992) Transforming growth factor beta has neurotrophic actions on sensory neurons in vitro and is synergistic with nerve growth factor. Dev Biol 152:121–132

    PubMed  Article  CAS  Google Scholar 

  • Chin J, Angers A, Cleary LJ, Eskin A, Byrne JH (2002) Transforming growth factor beta1 alters synapsin distribution and modulates synaptic depression in Aplysia. J Neurosci 22:RC220

    PubMed  CAS  Google Scholar 

  • Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270:14843–14846

    PubMed  Article  CAS  Google Scholar 

  • Constam DB, Schmid P, Aguzzi A, Schachner M, Fontana A (1994) Transient production of TGF-beta 2 by postnatal cerebellar neurons and its effect on neuroblast proliferation. Eur J Neurosci 6:766–778

    PubMed  Article  CAS  Google Scholar 

  • Davis RJ (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268:14553–14556

    PubMed  CAS  Google Scholar 

  • Fegley AJ, Tanski WJ, Roztocil E, Davies MG (2003) Sphingosine-1-phosphate stimulates smooth muscle cell migration through Galpha(I)- and PI3-kinase-dependent p38-MAPK(MAPK) activation. J Surg Res 113:32–41

    PubMed  Article  CAS  Google Scholar 

  • Flanders KC, Ludecke G, Engels S, Cissel DS, Roberts AB, Kondaiah P, Lafyatis R, Sporn MB, Unsicker K (1991) Localization and actions of transforming growth factor-beta s in the embryonic nervous system. Development 113:183–191

    PubMed  CAS  Google Scholar 

  • Gross CE, Bednar MM, Howard DB, Sporn MB (1993) Transforming growth factor-beta 1 reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke 24:558–562

    PubMed  CAS  Google Scholar 

  • Henrich-Noack P, Prehn JH, Krieglstein J (1996) TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke 27:1609–1614

    PubMed  CAS  Google Scholar 

  • Jiang Y, Zhang M, Koishi K, McLennan IS (2000) TGF-beta 2 attenuates the injury-induced death of mature motoneurons. J Neurosci Res 62:809–813

    PubMed  Article  CAS  Google Scholar 

  • Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    PubMed  CAS  Google Scholar 

  • Kim WK, Hwang SY, Oh ES, Piao HZ, Kim KW, Han IO (2004) TGF-beta1 represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J Immunol 172:7015–7023

    PubMed  CAS  Google Scholar 

  • Krieglstein K (1999) Synergistic effect of cytokines let neurotrophic functions begin (in German).Ann Anat 181:423–425

    Article  Google Scholar 

  • Krieglstein K, Unsicker K (1994) Transforming growth factor-beta promotes survival of midbrain dopaminergic neurons and protects them against N-methyl-4-phenylpyridinium ion toxicity. Neuroscience 63:1189–1196

    PubMed  Article  CAS  Google Scholar 

  • Krieglstein K, Rufer M, Suter-Crazzolara C, Unsicker K (1995a) Neural functions of the transforming growth factors beta. Int J Dev Neurosci 13:301–315

    PubMed  Article  CAS  Google Scholar 

  • Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K (1995b) TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 14:736–742

    PubMed  CAS  Google Scholar 

  • Krieglstein K, Farkas L, Unsicker K (1998) TGF-beta regulates the survival of ciliary ganglionic neurons synergistically with ciliary neurotrophic factor and neurotrophins. J Neurobiol 37:563–572

    PubMed  Article  CAS  Google Scholar 

  • Krieglstein K, Richter S, Farkas L, Schuster N, Dunker N, Oppenheim RW, Unsicker K (2000) Reduction of endogenous transforming growth factors beta prevents ontogenetic neuron death. Nat Neurosci 3:1085–1090

    PubMed  Article  CAS  Google Scholar 

  • Kumar P, Miller AI, Polverini PJ (2004) p38-MAPK mediates gamma-irradiation-induced endothelial cell apoptosis, and vascular endothelial growth factor protects endothelial cells through the phosphoinositide 3-kinase-Akt-Bcl-2 pathway. J Biol Chem 279:43352–43360

    PubMed  Article  CAS  Google Scholar 

  • Lhuillier L, Dryer SE (2000) Developmental regulation of neuronal KCa channels by TGFbeta 1: transcriptional and posttranscriptional effects mediated by ERK1/2 MAP kinase. J Neurosci 20:5616–5622

    PubMed  CAS  Google Scholar 

  • Linseman DA, Laessig T, Meintzer MK, McClure M, Barth H, Aktories K, Heidenreich KA (2001) An essential role for Rac/Cdc42 GTPases in cerebellar granule neuron survival. J Biol Chem 276:39123–39131

    PubMed  Article  CAS  Google Scholar 

  • Luca A de, Weller M, Fontana A (1996) TGF-beta-induced apoptosis of cerebellar granule neurons is prevented by depolarization. J Neurosci 16:4174–4185

    PubMed  Google Scholar 

  • Martinou JC, Le Van TA, Valette A, Weber MJ (1990) Transforming growth factor beta 1 is a potent survival factor for rat embryo motoneurons in culture. Brain Res Dev Brain Res 52:175–181

    PubMed  Article  CAS  Google Scholar 

  • Marzella PL, Clark GM, Shepherd RK, Bartlett PF, Kilpatrick TJ (1998) Synergy between TGF-beta 3 and NT-3 to promote the survival of spiral ganglia neurones in vitro. Neurosci Lett 240:77–80

    PubMed  Article  CAS  Google Scholar 

  • Meucci O, Miller RJ (1996) gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci 16:4080–4088

    PubMed  CAS  Google Scholar 

  • Peterziel H, Unsicker K, Krieglstein K (2002) TGFbeta induces GDNF responsiveness in neurons by recruitment of GFRalpha1 to the plasma membrane. J Cell Biol 159:157–167

    PubMed  Article  CAS  Google Scholar 

  • Pochon NA, Menoud A, Tseng JL, Zurn AD, Aebischer P (1997) Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 9:463–471

    PubMed  Article  CAS  Google Scholar 

  • Poulsen KT, Armanini MP, Klein RD, Hynes MA, Phillips HS, Rosenthal A (1994) TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13:1245–1252

    PubMed  Article  CAS  Google Scholar 

  • Prehn JH, Backhauss C, Krieglstein J (1993) Transforming growth factor-beta 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab 13:521–525

    PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB (1990) The transforming growth factor-bs. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors. Handbook of experimental pharmacology 95/1. Springer, Heidelberg, pp 418–472

    Google Scholar 

  • Roux PP, Blenis J (2004) ERK1/2 and p38-MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    PubMed  Article  CAS  Google Scholar 

  • Schober A, Hertel R, Arumae U, Farkas L, Jaszai J, Krieglstein K, Saarma M, Unsicker K (1999) Glial cell line-derived neurotrophic factor rescues target-deprived sympathetic spinal cord neurons but requires transforming growth factor-beta as cofactor in vivo. J Neurosci 19:2008–2015

    PubMed  CAS  Google Scholar 

  • Schuster N, Krieglstein K (2002) Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 307:1–14

    PubMed  Article  CAS  Google Scholar 

  • Schuster N, Dunker N, Krieglstein K (2002) Transforming growth factor-beta induced cell death in the developing chick retina is mediated via activation of c-jun N-terminal kinase and downregulation of the anti-apoptotic protein Bcl-X(L). Neurosci Lett 330:239–242

    PubMed  Article  CAS  Google Scholar 

  • Scorziello A, Florio T, Bajetto A, Thellung S, Schettini G (1997) TGF-beta1 prevents gp120-induced impairment of Ca2+ homeostasis and rescues cortical neurons from apoptotic death. J Neurosci Res 49:600–607

    PubMed  Article  CAS  Google Scholar 

  • Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL (2001) Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1. Mol Biol Cell 12:3328–3339

    PubMed  CAS  Google Scholar 

  • Skoff AM, Lisak RP, Bealmear B, Benjamins JA (1998) TNF-alpha and TGF-beta act synergistically to kill Schwann cells. J Neurosci Res 53:747–756

    PubMed  Article  CAS  Google Scholar 

  • Subramaniam S, Unsicker K (2006) Extracellular signal-regulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138:1055–1065

    PubMed  Article  CAS  Google Scholar 

  • Subramaniam S, Strelau J, Unsicker K (2003) Growth differentiation factor-15 prevents low potassium-induced cell death of cerebellar granule neurons by differential regulation of Akt and ERK1/2 pathways. J Biol Chem 278:8904–8912

    PubMed  Article  CAS  Google Scholar 

  • Subramaniam S, Zirrgiebel U, Bohlen Und HO, Strelau J, Laliberte C, Kaplan DR, Unsicker K (2004) ERK1/2 activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol 165:357–369

    PubMed  Article  CAS  Google Scholar 

  • Subramaniam S, Shahani N, Strelau J, Laliberte C, Brandt R, Kaplan D, Unsicker K (2005) Insulin-like growth factor 1 inhibits extracellular signal-regulated kinase to promote neuronal survival via the phosphatidylinositol 3-kinase/protein kinase A/c-Raf pathway. J Neurosci 25:2838–2852

    PubMed  Article  CAS  Google Scholar 

  • Tomoda T, Shirasawa T, Yahagi YI, Ishii K, Takagi H, Furiya Y, Arai KI, Mori H, Muramatsu MA (1996) Transforming growth factor-beta is a survival factor for neonate cortical neurons: coincident expression of type I receptors in developing cerebral cortices. Dev Biol 179:79–90

    PubMed  Article  CAS  Google Scholar 

  • Unsicker K, Krieglstein K (2000) Co-activation of TGF-ss and cytokine signaling pathways are required for neurotrophic functions. Cytokine Growth Factor Rev 11:97–102

    PubMed  Article  CAS  Google Scholar 

  • Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44:613–625

    PubMed  Article  CAS  Google Scholar 

  • Valdes F, Murillo MM, Valverde AM, Herrera B, Sanchez A, Benito M, Fernandez M, Fabregat I (2004) Transforming growth factor-beta activates both pro-apoptotic and survival signals in fetal rat hepatocytes. Exp Cell Res 292:209–218

    PubMed  Article  CAS  Google Scholar 

  • Watson A, Eilers A, Lallemand D, Kyriakis J, Rubin LL, Ham J (1998) Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons. J Neurosci 18:751–762

    PubMed  CAS  Google Scholar 

  • Xu Z, Ma DZ, Wang LY, Su JM, Zha XL (2003) Transforming growth factor-beta1 stimulated protein kinase B serine-473 and focal adhesion kinase tyrosine phosphorylation dependent on cell adhesion in human hepatocellular carcinoma SMMC-7721 cells. Biochem Biophys Res Commun 312:388–396

    PubMed  Article  CAS  Google Scholar 

  • Zhu Y, Ahlemeyer B, Bauerbach E, Krieglstein J (2001) TGF-beta1 inhibits caspase-3 activation and neuronal apoptosis in rat hippocampal cultures. Neurochem Int 38:227–235

    PubMed  Article  Google Scholar 

  • Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, Krieglstein J (2002) Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22:3898–3909

    PubMed  CAS  Google Scholar 

  • Zhu Y, Culmsee C, Klumpp S, Krieglstein J (2004) Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways. Neuroscience 123:897–906

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kambiz N. Alavian for graphics preparation and Jutta Fey for support with cell culturing. We are also grateful to Dr. Neelam Shahani for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Subramaniam.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (STR 616/1–2) and by a fellowship (Young Investigator Award) from the Medical Faculty, University of Heidelberg, Germany to S. Subramaniam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Subramaniam, S., Strelau, J. & Unsicker, K. GDNF prevents TGF-β-induced damage of the plasma membrane in cerebellar granule neurons by suppressing activation of p38-MAPK via the phosphatidylinositol 3-kinase pathway. Cell Tissue Res 331, 373–383 (2008). https://doi.org/10.1007/s00441-007-0538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0538-8

Keywords

  • Neuronal death
  • Antagonism
  • Signaling
  • Growth factor
  • Caspase-3
  • DNA fragmentation
  • Rat (Wistar)