Skip to main content

Advertisement

Log in

Presence of a non-neuronal cholinergic system and occurrence of up- and down-regulation in expression of M2 muscarinic acetylcholine receptors: new aspects of importance regarding Achilles tendon tendinosis (tendinopathy)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Limited information is available concerning the existence of a cholinergic system in the human Achilles tendon. We have studied pain-free normal Achilles tendons and chronically painful Achilles tendinosis tendons with regard to immunohistochemical expression patterns of the M2 muscarinic acetylcholine receptor (M2R), choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). M2R immunoreactivity was detected in the walls of blood vessels. As evidenced via parallel staining for CD31 and alpha-smooth muscle actin, most M2R immunoreactivity was present in the endothelium. M2R immunoreactivity also occured in tenocytes, which regularly immunoreact for vimentin. The degree of M2R immunoreactivity was highly variable, tendinosis tendons that exhibit hypercellularity and hypervascularity showing the highest levels of immunostaining. Immunoreaction for ChAT and VAChT was detected in tenocytes in tendinosis specimens, particularly in aberrant cells. In situ hybridization revealed that mRNA for ChAT is present in tenocytes in tendinosis specimens. Our results suggest that autocrine/paracrine effects occur concerning the tenocytes in tendinosis. Up-regulation/down-regulation in the levels of M2R immunoreactivity possibly take place in tenocytes and blood vessel cells during the various stages of tendinosis. The presumed local production of acetylcholine (ACh), as evidenced by immunoreactivity for ChAT and VAChT and the detection of ChAT mRNA, appears to evolve in response to tendinosis. These observations are of importance because of the well-known vasoactive, trophic, and pain-modulating effects that ACh is known to have and do unexpectedly establish the presence of a non-neuronal cholinergic system in the Achilles tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alfredson H, Lorentzon R (2002) Chronic tendon pain: no signs of chemical inflammation but high concentrations of the neurotransmitter glutamate. Implications for treatment? A review. Curr Drug Targets 3:43–54

    Article  PubMed  CAS  Google Scholar 

  • Alfredson H, Öhberg L (2005) Sclerosing injections to areas of neo-vascularisation reduce pain in Achilles tendinopathy: a double-blind randomised controlled trial. Knee Surg Sports Traumatol Arthrosc 13:338–344

    Article  PubMed  Google Scholar 

  • Alfredson H, Forsgren S, Thorsen K, Fahlström M, Johansson H, Lorentzon R (2001) Glutamate NMDAR1 receptors localized to nerves in human Achilles tendons. Implications for treatment? Knee Surg Sports Traumatol Arthrosc 9:123–126

    Article  PubMed  CAS  Google Scholar 

  • Alfredson H, Öhberg L, Forsgren S (2003) Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis? An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg Sports Traumatol Arthrosc 11:334–338

    Article  PubMed  Google Scholar 

  • Åström M (1995) Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings. Clin Orthop 316:51–164

    Google Scholar 

  • Badaut J, Moro V, Seylaz J, Lasbennes F (1997) Distribution of muscarinic receptors on the endothelium of cortical vessels in the brain. Brain Res 778:25–33

    Article  PubMed  CAS  Google Scholar 

  • Bjur D, Alfredson H, Forsgren S (2005) The innervation pattern of the human Achilles tendon: studies of the normal and tendinosis tendon with markers for general and sensory innervation. Cell Tissue Res 320:201–206

    Article  PubMed  Google Scholar 

  • Burnstock G, Ralevic V (1994) New insights into the local regulation of blood flow by perivascular nerves and endothelium. Br J Plast Surg 47:527–543

    Article  PubMed  CAS  Google Scholar 

  • Cassiman D, Denef C, Desmet VJ, Roskams T (2001) Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 33:148–158

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  CAS  Google Scholar 

  • Chapple CR, Yamanishi T, Chess-Williams R (2002) Muscarinic receptor subtypes and management of the overactive bladder. Urology 60:82–88

    Article  PubMed  Google Scholar 

  • Danielson P, Alfredson H, Forsgren S (2006) Immunohistochemical and histochemical findings favoring the occurrence of autocrine/paracrine as well as nerve-related cholinergic effects in chronic painful patellar tendon tendinosis. Microsc Res Tech 69:808–819

    Article  PubMed  CAS  Google Scholar 

  • Delaney K, Murph M, Brown L, Radhakrishna H (2002) Transfer of M2 muscarinic acetylcholine receptors to clathrin-derived early endosomes following clathrin-independent endocytosis. J Biol Chem 277:33439–33446

    Article  PubMed  CAS  Google Scholar 

  • Dussor GO, Helesic G, Hargreaves KM, Flores CM (2004) Cholinergic modulation of nociceptive responses in vivo and neuropeptide release in vitro at the level of the primary sensory neuron. Pain 107:22–32

    Article  PubMed  CAS  Google Scholar 

  • Eiden LE (1998) The cholinergic gene locus. J Neurochem 70:2227–2240

    Article  PubMed  CAS  Google Scholar 

  • Falk-Variant J, Israel M, Bruner J, Stinnakre J, Meunier FM, Gaultier P, Meunier FA, Lesbats B, Synguelakis M, Correges P, Dunant Y (1996) Enhancement of quantal transmitter release and mediatophore expression by cyclic AMP in fibroblasts loaded with acetylcholine. Neuroscience 75:353–360

    Article  Google Scholar 

  • Fisher LJ, Schinstine M, Salvaterra P, Dekker AJ, Thal L, Gage FH (1993) In vivo production and release of acetylcholine from primary fibroblasts genetically modified to express choline acetyltransferase. J Neurochem 61:1323–1332

    Article  PubMed  CAS  Google Scholar 

  • Forsgren S, Danielson P, Alfredson H (2005) Vascular NK-1 receptor occurrence in normal and chronic painful Achilles and patellar tendons: studies on chemically unfixed as well as fixed specimens. Regul Pept 126:173–181

    Article  PubMed  CAS  Google Scholar 

  • Fritz S, Wessler I, Breitling R, Rossmanith W, Ojeda SR, Dissen GA, Amsterdam A, Mayerhofer A (2001) Expression of muscarinic receptor types in the primate ovary and evidence for nonneural acetylcholine synthesis. J Clin Endocrinol Metab 86:349–354

    Article  PubMed  CAS  Google Scholar 

  • Fu WM, Liou HC, Chen YH, Wang SM (1998) Release of acetylcholine from embryonic myocytes in Xenopus cell cultures. J Physiol (Lond) 509:497–506

    Article  CAS  Google Scholar 

  • Haberberger RV, Bodenbenner M (2000) Immunohistochemical localization of muscarinic receptors (M2) in the rat skin. Cell Tissue Res 300:389–396

    Article  PubMed  CAS  Google Scholar 

  • Haberberger RV, Bodenbenner M, Kummer W (2000) Expression of the cholinergic gene locus in pulmonary arterial endothelial cells. Histochem Cell Biol 113:379–387

    PubMed  CAS  Google Scholar 

  • Haberberger RV, Pfeil U, Lips KS, Kummer W (2002) Expression of the high-affinity choline transporter, CHT1, in the neuronal and non-neuronal cholinergic system of human and rat skin. J Invest Dermatol 119:943–948

    Article  PubMed  CAS  Google Scholar 

  • Hansson M, Forsgren S (1995) Immunoreactive atrial and brain natriuretic peptides are co-localized in Purkinje fibres but not in the innervation of the bovine heart conduction system. Histochem J 27:222–230

    PubMed  CAS  Google Scholar 

  • Hasegawa T, Hirose T, Kudo E, Abe J, Hizawa K (1990) Cytoskeletal characteristics of myofibroblasts in benign neoplastic and reactive fibroblastic lesions. Virchows Arch A Pathol Anat Histopathol 416:375–382

    Article  PubMed  CAS  Google Scholar 

  • Höckerfelt U, Franzén L, Norrgård Ö, Forsgren S (2002) Early increase and later decrease in VIP and substance P nerve fiber densities following abdominal radiotherapy-a study on the human colon. Int J Radiat Biol 78:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Ikeda C, Morita I, Mori A, Fujimoto K, Suzuki T, Kawashima K, Murota S (1994) Phorbol ester stimulates acetylcholine synthesis in cultured endothelial cells isolated from porcine cerebral microvessels. Brain Res 655:147–152

    Article  PubMed  CAS  Google Scholar 

  • Jacobi J, Jang JJ, Sundram U, Dayoub H, Fajardo LF, Cooke JP (2002) Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. Am J Pathol 161:97–104

    PubMed  CAS  Google Scholar 

  • Jozsa L, Kannus P (1997) Human tendons: anatomy, physiology, pathology. Human Kinetics, Champaign, Ill., USA

    Google Scholar 

  • Khan KM, Cook JL, Bonar F, Harcourt P, Åström M (1999) Histopathology of common tendinopathies. Update and implications for clinical management. Sports Med 27:393–408

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick CJ, Bittinger F, Unger RE, Kriegsmann J, Kilbinger H, Wessler I (2001) The non-neuronal cholinergic system in the endothelium: evidence and possible pathobiological significance. Jpn J Pharmacol 85:24–28

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick J, Bittinger F, Nozadze K, Wessler I (2003) Expression and function of the non-neuronal cholinergic system in endothelial cells. Life Sci 72:2111–2116

    Article  PubMed  CAS  Google Scholar 

  • Koenig JA, Edwardson JM (1996) Intracellular trafficking of the muscarinic acetylcholine receptor: importance of subtype and cell type. Mol Pharmacol 49:351–359

    PubMed  CAS  Google Scholar 

  • Li M, Yasuda RP, Wall SJ, Wellstein A, Wolfe BB (1991) Distribution of m2 muscarinic receptors in rat brain using antisera selective for m2 receptors. Mol Pharmacol 40:28–35

    PubMed  CAS  Google Scholar 

  • Liste I, Bernard V, Bloch B (2002) Acute and chronic acetylcholinesterase inhibition regulates in vivo the localization and abundance of muscarinic receptors m2 and m4 at the cell surface and in the cytoplasm of striatal neurons. Mol Cell Neurosci 20:244–256

    Article  PubMed  CAS  Google Scholar 

  • Maffulli N, Testa V, Capasso G, Ewen SW, Sullo A, Benazzo F, King JB (2004) Similar histopathological picture in males with Achilles and patellar tendinopathy. Med Sci Sports Exerc 36:1470–1475

    Article  PubMed  Google Scholar 

  • Movin T, Gad A, Reinholt FP (1997) Tendon pathology in long-standing achillodynia. Biopsy findings in 40 patients. Acta Orthop Scand 68:170–175

    Article  PubMed  CAS  Google Scholar 

  • Nakaya M, Yuasa T, Usui N (2002) Immunohistochemical localization of subtypes of muscarinic receptors in human inferior turbinate mucosa. Ann Otol Rhinol Laryngol 111:593–597

    PubMed  Google Scholar 

  • Oben JA, Yang S, Lin H, Ono M, Diehl AM (2003) Acetylcholine promotes the proliferation and collagen gene expression of myofibroblastic hepatic stellate cells. Biochem Biophys Res Commun 300:172–177

    Article  PubMed  CAS  Google Scholar 

  • Olsson C, Costa M, Brookes SJ (2004) Neurochemical characterization of extrinsic innervation of the guinea pig rectum. J Comp Neurol 470:357–371

    Article  PubMed  CAS  Google Scholar 

  • Osborn M, Debus E, Weber K (1984) Monoclonal antibodies specific for vimentin. Eur J Cell Biol 34:137–143

    PubMed  CAS  Google Scholar 

  • Pals-Rylaarsdam R, Hosey MM (1997) Two homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetylcholine receptor. J Biol Chem 272:14152–14158

    Article  PubMed  CAS  Google Scholar 

  • Panoskaltsis-Mortari A, Bucy RP (1995) In situ hybridization with digoxigenin-labeled RNA probes: facts and artifacts. Biotechniques 18:300–307

    PubMed  CAS  Google Scholar 

  • Pesic S, Grbovic L, Jovanovic A, Radenkovic M, Stojic D, Cvetkovic Z, Ilic I (2003) Endothelium-dependent relaxation of canine uterine artery in response to acetylcholine: the possible involvement of alternative pathways. J Vet Med 50:391–396

    Article  CAS  Google Scholar 

  • Phillips J, Hickey H, Hill C (2000) Heterogeneity in mechanisms underlying vasodilatory responses in small arteries of the rat hepatic mesentery. Auton Neurosci 83:159–170

    Article  PubMed  CAS  Google Scholar 

  • Riley G (2005) Chronic tendon pathology: molecular basis and therapeutic implications. Expert Rev Mol Med 7:1–25

    Article  PubMed  Google Scholar 

  • Rufai A, Benjamin M, Ralphs JR (1992) Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat Embryol 186:611–618

    Article  PubMed  CAS  Google Scholar 

  • Schlador M, Grubbs R, Nathanson N (2000) Multiple topological domains mediate subtype-specific internalization of the M2 muscarinic acetylcholine receptor. J Biol Chem 275:23295–23302

    Article  PubMed  CAS  Google Scholar 

  • Sekhon HS, Keller JA, Proskocil BJ, Martin EL, Spindel ER (2002) Maternal nicotine exposure upregulates collagen gene expression in fetal monkey lung. Association with alpha7 nicotinic acetylcholine receptors. Am J Respir Cell Mol Biol 26:31–41

    PubMed  CAS  Google Scholar 

  • Shalabi A (2004) Magnetic resonance imaging in chronic Achilles tendinopathy. Thesis, Karolinska Institute, Stockholm

  • Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alfa-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    Article  PubMed  CAS  Google Scholar 

  • Tsuga H, Kameyama K, Haga T, Honma T, Lameh J, Sadée W (1998) Internalization and down-regulation of human muscarinic acetylcholine receptor m2 subtypes. J Biol Chem 273:5323–5330

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama T, Chess-Williams R (2004) Muscarinic receptor subtypes of the bladder and gastrointestinal tract. J Smooth Muscle Res 40:237–247

    Article  PubMed  Google Scholar 

  • van Koppen C, Kaiser B (2003) Regulation of acetylcholine receptor signaling. Pharmacol Ther 98:197–220

    Article  PubMed  CAS  Google Scholar 

  • Vane JR, Angerred EE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323:27–36

    Article  PubMed  CAS  Google Scholar 

  • Vogelsang H, Meyer G, Homstein OP (1995) Acetylcholine induces different cutaneous sensations in atopic and non-atopic subjects. Acta Derm Venereol 75:434–436

    PubMed  CAS  Google Scholar 

  • Wehrwein E, Thompson SA, Coulibaly SF, Linn DM, Linn CL (2004) Acetylcholine protection of adult pig retinal ganglion cells from glutamate-induced excitotoxicity. Invest Ophthalmol Vis Sci 45:1531–1543

    Article  PubMed  Google Scholar 

  • Wessler I, Kilbinger H, Bittinger F, Unger R, Kirkpatrick J (2003) The non-neuronal cholinergic system in humans: expression, function and pathophysiology. Life Sci 72:2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Yung KK, Lo YL (1997) Immunocytochemical localization of muscarinic m2 receptor in the rat spinal cord. Neurosci Lett 27:81–84

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ulla Hedlund and Lena Jonsson for excellent technical services and to Professor L.-E. Thornell for generous gifts of antibodies against human vimentin and alpha-smooth muscle actin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sture Forsgren.

Additional information

Financial support was provided by the Faculty of Medicine at Umeå University, the Swedish National Centre for Research in Sports, and the County Council of Västerbotten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjur, D., Danielson, P., Alfredson, H. et al. Presence of a non-neuronal cholinergic system and occurrence of up- and down-regulation in expression of M2 muscarinic acetylcholine receptors: new aspects of importance regarding Achilles tendon tendinosis (tendinopathy). Cell Tissue Res 331, 385–400 (2008). https://doi.org/10.1007/s00441-007-0524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0524-1

Keywords

Navigation