Skip to main content

Advertisement

Log in

Retinal stem cells: promising candidates for retina transplantation

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Stem cell transplantation is widely considered as a promising therapeutic approach for photoreceptor degeneration, one of the major causes of blindness. In this review, we focus on the biology of retinal stem cells (RSCs) and progenitor cells (RPCs) isolated from fetal, postnatal, and adult animals, with emphasis on those from rodents and humans. We discuss the origin of RSCs/RPCs, the markers expressed by these cells and the conditions for the isolation, culture, and differentiation of these cells in vitro or in vivo by induction with exogenous stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdouh M, Bernier G (2006) In vivo reactivation of a quiescent cell population located in the ocular ciliary body of adult mammals. Exp Eye Res 83:153–164

    PubMed  CAS  Google Scholar 

  • Agathocleous M, Locker M, Harris WA, Perron M (2007) A general role of hedgehog in the regulation of proliferation. Cell Cycle 6:156–159

    PubMed  CAS  Google Scholar 

  • Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521

    PubMed  CAS  Google Scholar 

  • Akagi T, Haruta M, Akita J, Nishida A, Honda Y, Takahashi M (2003) Different characteristics of rat retinal progenitor cells from different culture periods. Neurosci Lett 341:213–216

    PubMed  CAS  Google Scholar 

  • Altshuler D, Cepko C (1992) A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114:947–957

    PubMed  CAS  Google Scholar 

  • Altshuler D, Lo Turco JJ, Rush J, Cepko C (1993) Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Development 119:1317–1328

    PubMed  CAS  Google Scholar 

  • Anchan RM, Reh TA, Angello J, Balliet A, Walker M (1991) EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6:923–936

    PubMed  CAS  Google Scholar 

  • Angenieux B, Schorderet DF, Arsenijevic Y (2006) Epidermal growth factor is a neuronal differentiation factor for retinal stem cells in vitro. Stem Cells 24:696–706

    PubMed  CAS  Google Scholar 

  • Arai S, Thomas BB, Seiler MJ, Aramant RB, Qiu G, Mui C, Juan E de, Sadda SR (2004) Restoration of visual responses following transplantation of intact retinal sheets in rd mice. Exp Eye Res 79:331–341

    PubMed  CAS  Google Scholar 

  • Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45:4251–4255

    PubMed  Google Scholar 

  • Banin E, Obolensky A, Idelson M, Hemo I, Reinhardtz E, Pikarsky E, Ben Hur T, Reubinoff B (2006) Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells 24:246–257

    PubMed  Google Scholar 

  • Belecky-Adams T, Tomarev S, Li HS, Ploder L, McInnes RR, Sundin O, Adler R (1997) Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest Ophthalmol Vis Sci 38:1293–1303

    PubMed  CAS  Google Scholar 

  • Belliveau MJ, Cepko CL (1999) Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development 126:555–566

    PubMed  CAS  Google Scholar 

  • Canola K, Arsenijevic Y (2007) Generation of cells committed towards the photoreceptor fate for retinal transplantation. Neuroreport 18:851–855

    PubMed  Google Scholar 

  • Canola K, Angenieux B, Tekaya M, Quiambao A, Naash MI, Munier FL, Schorderet DF, Arsenijevic Y (2007) Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci 48:446–454

    PubMed  Google Scholar 

  • Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E, Kitajewski J, Arenas E (2003) Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci USA 100:12747–12752

    PubMed  CAS  Google Scholar 

  • Cayouette M, Poggi L, Harris WA (2006) Lineage in the vertebrate retina. Trends Neurosci 29:563–570

    PubMed  CAS  Google Scholar 

  • Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93:589–595

    PubMed  CAS  Google Scholar 

  • Coles BL, Angenieux B, Inoue T, Rio-Tsonis K, Spence JR, McInnes RR, Arsenijevic Y, Kooy D van der (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 101:15772–15777

    PubMed  CAS  Google Scholar 

  • Coles BL, Horsford DJ, McInnes RR, Kooy D van der (2006) Loss of retinal progenitor cells leads to an increase in the retinal stem cell population in vivo. Eur J Neurosci 23:75–82

    PubMed  Google Scholar 

  • Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:e283

    PubMed  Google Scholar 

  • Das AV, James J, Rahnenfuhrer J, Thoreson WB, Bhattacharya S, Zhao X, Ahmad I (2005) Retinal properties and potential of the adult mammalian ciliary epithelium stem cells. Vision Res 45:1653–1666

    PubMed  Google Scholar 

  • Das AV, Mallya KB, Zhao X, Ahmad F, Bhattacharya S, Thoreson WB, Hegde GV, Ahmad I (2006a) Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299:283–302

    PubMed  CAS  Google Scholar 

  • Das AV, Zhao X, James J, Kim M, Cowan KH, Ahmad I (2006b) Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling. Biochem Biophys Res Commun 339:708–716

    PubMed  CAS  Google Scholar 

  • Dorsky RI, Rapaport DH, Harris WA (1995) Xotch inhibits cell differentiation in the Xenopus retina. Neuron 14:487–496

    PubMed  CAS  Google Scholar 

  • Dyer MA, Cepko CL (2001) p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J Neurosci 21:4259–4271

    PubMed  CAS  Google Scholar 

  • Elliott J, Cayouette M, Gravel C (2006) The CNTF/LIF signaling pathway regulates developmental programmed cell death and differentiation of rod precursor cells in the mouse retina in vivo. Dev Biol 300:583–598

    PubMed  CAS  Google Scholar 

  • Ezzeddine ZD, Yang X, DeChiara T, Yancopoulos G, Cepko CL (1997) Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124:1055–1067

    PubMed  CAS  Google Scholar 

  • Fernald RD (1990) Teleost vision: seeing while growing. J Exp Zool Suppl 5:167–180

    PubMed  CAS  Google Scholar 

  • Fischer AJ, Reh TA (2000) Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev Biol 220:197–210

    PubMed  CAS  Google Scholar 

  • Fischer AJ, Reh TA (2003) Growth factors induce neurogenesis in the ciliary body. Dev Biol 259:225–240

    PubMed  CAS  Google Scholar 

  • Fischer AJ, McGuire CR, Dierks BD, Reh TA (2002) Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina. J Neurosci 22:9387–9398

    PubMed  CAS  Google Scholar 

  • Fuhrmann S, Kirsch M, Hofmann HD (1995) Ciliary neurotrophic factor promotes chick photoreceptor development in vitro. Development 121:2695–2706

    PubMed  CAS  Google Scholar 

  • Fuhrmann S, Heller S, Rohrer H, Hofmann HD (1998) A transient role for ciliary neurotrophic factor in chick photoreceptor development. J Neurobiol 37:672–683

    PubMed  CAS  Google Scholar 

  • Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL (2000) rax, Hes1, and notch1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron 26:383–394

    PubMed  CAS  Google Scholar 

  • Gaasterland DE, Pederson JE, MacLellan HM, Reddy VN (1979) Rhesus monkey aqueous humor composition and a primate ocular perfusate. Invest Ophthalmol Vis Sci 18:1139–1150

    PubMed  CAS  Google Scholar 

  • Ghosh F, Arner K, Ehinger B (1998) Transplant of full-thickness embryonic rabbit retina using pars plana vitrectomy. Retina 18:136–142

    PubMed  CAS  Google Scholar 

  • Gotz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–1044

    PubMed  CAS  Google Scholar 

  • Gregg C, Weiss S (2003) Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 23:11587–11601

    PubMed  CAS  Google Scholar 

  • Guo Y, Saloupis P, Shaw SJ, Rickman DW (2003) Engraftment of adult neural progenitor cells transplanted to rat retina injured by transient ischemia. Invest Ophthalmol Vis Sci 44:3194–3201

    PubMed  Google Scholar 

  • Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5:308–315

    PubMed  CAS  Google Scholar 

  • Hicks D, Courtois Y (1992) Fibroblast growth factor stimulates photoreceptor differentiation in vitro. J Neurosci 12:2022–2033

    PubMed  CAS  Google Scholar 

  • Hunter DD, Murphy MD, Olsson CV, Brunken WJ (1992) S-laminin expression in adult and developing retinae: a potential cue for photoreceptor morphogenesis. Neuron 8:399–413

    PubMed  CAS  Google Scholar 

  • Jadhav AP, Cho SH, Cepko CL (2006) Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci USA 103:18998–19003

    PubMed  CAS  Google Scholar 

  • James J, Das AV, Bhattacharya S, Chacko DM, Zhao X, Ahmad I (2003) In vitro generation of early-born neurons from late retinal progenitors. J Neurosci 23:8193–8203

    PubMed  CAS  Google Scholar 

  • Kelley MW, Turner JK, Reh TA (1994) Retinoic acid promotes differentiation of photoreceptors in vitro. Development 120:2091–2102

    PubMed  CAS  Google Scholar 

  • Kelley MW, Turner JK, Reh TA (1995) Regulation of proliferation and photoreceptor differentiation in fetal human retinal cell cultures. Invest Ophthalmol Vis Sci 36:1280–1289

    PubMed  CAS  Google Scholar 

  • Kelley MW, Williams RC, Turner JK, Creech-Kraft JM, Reh TA (1999) Retinoic acid promotes rod photoreceptor differentiation in rat retina in vivo. Neuroreport 10:2389–2394

    PubMed  CAS  Google Scholar 

  • Khanna H, Akimoto M, Siffroi-Fernandez S, Friedman JS, Hicks D, Swaroop A (2006) Retinoic acid regulates the expression of photoreceptor transcription factor NRL. J Biol Chem 281:27327–27334

    PubMed  CAS  Google Scholar 

  • Kirsch M, Schulz-Key S, Wiese A, Fuhrmann S, Hofmann H (1998) Ciliary neurotrophic factor blocks rod photoreceptor differentiation from postmitotic precursor cells in vitro. Cell Tissue Res 291:207–216

    PubMed  CAS  Google Scholar 

  • Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P, Young MJ (2004) Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci 45:4167–4173

    PubMed  Google Scholar 

  • Klassen H, Kiilgaard JF, Zahir T, Ziaeian B, Kirov I, Scherfig E, Warfvinge K, Young MJ (2007) Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients. Stem Cells 25:1222–1230

    PubMed  CAS  Google Scholar 

  • Kubo F, Takeichi M, Nakagawa S (2003) Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 130:587–598

    PubMed  CAS  Google Scholar 

  • Kubota A, Nishida K, Nakashima K, Tano Y (2006) Conversion of mammalian Muller glial cells into a neuronal lineage by in vitro aggregate-culture. Biochem Biophys Res Commun 351:514–520

    PubMed  CAS  Google Scholar 

  • Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 103:12769–12774

    PubMed  CAS  Google Scholar 

  • Lavik EB, Klassen H, Warfvinge K, Langer R, Young MJ (2005) Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors. Biomaterials 26:3187–3196

    PubMed  CAS  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    PubMed  CAS  Google Scholar 

  • Lillien L, Cepko C (1992) Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development 115:253–266

    PubMed  CAS  Google Scholar 

  • MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207

    PubMed  CAS  Google Scholar 

  • Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55

    PubMed  CAS  Google Scholar 

  • Mayer EJ, Hughes EH, Carter DA, Dick AD (2003) Nestin positive cells in adult human retina and in epiretinal membranes. Br J Ophthalmol 87:1154–1158

    PubMed  CAS  Google Scholar 

  • Merhi-Soussi F, Angenieux B, Canola K, Kostic C, Tekaya M, Hornfeld D, Arsenijevic Y (2006) High yield of cells committed to the photoreceptor fate from expanded mouse retinal stem cells. Stem Cells 24:2060–2070

    PubMed  CAS  Google Scholar 

  • Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967

    PubMed  CAS  Google Scholar 

  • Moshiri A, Reh TA (2004) Persistent progenitors at the retinal margin of ptc+/− mice. J Neurosci 24:229–237

    PubMed  CAS  Google Scholar 

  • Nelson BR, Gumuscu B, Hartman BH, Reh TA (2006) Notch activity is downregulated just prior to retinal ganglion cell differentiation. Dev Neurosci 28:128–141

    PubMed  CAS  Google Scholar 

  • Nelson BR, Hartman BH, Georgi SA, Lan MS, Reh TA (2007) Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev Biol 304:479–498

    PubMed  CAS  Google Scholar 

  • Neophytou C, Vernallis AB, Smith A, Raff MC (1997) Muller-cell-derived leukaemia inhibitory factor arrests rod photoreceptor differentiation at a postmitotic pre-rod stage of development. Development 124:2345–2354

    PubMed  CAS  Google Scholar 

  • Nishida A, Takahashi M, Tanihara H, Nakano I, Takahashi JB, Mizoguchi A, Ide C, Honda Y (2000) Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest Ophthalmol Vis Sci 41:4268–4274

    PubMed  CAS  Google Scholar 

  • Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA 101:13654–13659

    PubMed  CAS  Google Scholar 

  • Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M (2007) Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27:4210–4219

    PubMed  CAS  Google Scholar 

  • Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, Friedlander M (2004) Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 114:765–774

    PubMed  CAS  Google Scholar 

  • Otteson DC, Hitchcock PF (2003) Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Res 43:927–936

    PubMed  CAS  Google Scholar 

  • Perron M, Harris WA (2000) Retinal stem cells in vertebrates. Bioessays 22:685–688

    PubMed  CAS  Google Scholar 

  • Perron M, Kanekar S, Vetter ML, Harris WA (1998) The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol 199:185–200

    PubMed  CAS  Google Scholar 

  • Qiu G, Seiler MJ, Arai S, Aramant RB, Sadda SR (2004) Alternative culture conditions for isolation and expansion of retinal progenitor cells. Curr Eye Res 28:327–336

    PubMed  CAS  Google Scholar 

  • Qiu G, Seiler MJ, Mui C, Arai S, Aramant RB, Juan E de Jr, Sadda S (2005) Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats. Exp Eye Res 80:515–525

    PubMed  CAS  Google Scholar 

  • Radtke ND, Aramant RB, Seiler MJ, Petry HM, Pidwell D (2004) Vision change after sheet transplant of fetal retina with retinal pigment epithelium to a patient with retinitis pigmentosa. Arch Ophthalmol 122:1159–1165

    PubMed  Google Scholar 

  • Rapaport DH, Patheal SL, Harris WA (2001) Cellular competence plays a role in photoreceptor differentiation in the developing Xenopus retina. J Neurobiol 49:129–141

    PubMed  CAS  Google Scholar 

  • Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM (2004) Timing and topography of cell genesis in the rat retina. J Comp Neurol 474:304–324

    PubMed  Google Scholar 

  • Reh TA, Kljavin IJ (1989) Age of differentiation determines rat retinal germinal cell phenotype: induction of differentiation by dissociation. J Neurosci 9:4179–4189

    PubMed  CAS  Google Scholar 

  • Riobo NA, Manning DR (2007) Pathways of signal transduction employed by vertebrate Hedgehogs. Biochem J 403:369–379

    PubMed  CAS  Google Scholar 

  • Roger J, Brajeul V, Thomasseau S, Hienola A, Sahel JA, Guillonneau X, Goureau O (2006) Involvement of pleiotrophin in CNTF-mediated differentiation of the late retinal progenitor cells. Dev Biol 298:527–539

    PubMed  CAS  Google Scholar 

  • Rubio D, Garcia-Castro J, Martin MC, de la FR, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039

    PubMed  CAS  Google Scholar 

  • Sagdullaev BT, Aramant RB, Seiler MJ, Woch G, McCall MA (2003) Retinal transplantation-induced recovery of retinotectal visual function in a rodent model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 44:1686–1695

    PubMed  Google Scholar 

  • Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ, Miele L, Cardoso AA, Classon M, Carlesso N (2005) Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med 202:157–168

    PubMed  CAS  Google Scholar 

  • Saxena MT, Schroeter EH, Mumm JS, Kopan R (2001) Murine notch homologs (N1-4) undergo presenilin-dependent proteolysis. J Biol Chem 276:40268–40273

    PubMed  CAS  Google Scholar 

  • Schraermeyer U, Thumann G, Luther T, Kociok N, Armhold S, Kruttwig K, Andressen C, Addicks K, Bartz-Schmidt KU (2001) Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. Cell Transplant 10:673–680

    PubMed  CAS  Google Scholar 

  • Schulz-Key S, Hofmann HD, Beisenherz-Huss C, Barbisch C, Kirsch M (2002) Ciliary neurotrophic factor as a transient negative regulator of rod development in rat retina. Invest Ophthalmol Vis Sci 43:3099–3108

    PubMed  Google Scholar 

  • Shiras A, Chettiar S, Shepal V, Rajendran G, Prasad R, Shastry P (2007) Spontaneous transformation of human adult non-tumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells (in press)

  • Silva AO, Ercole CE, McLoon SC (2003) Regulation of ganglion cell production by Notch signaling during retinal development. J Neurobiol 54:511–524

    PubMed  CAS  Google Scholar 

  • Silverman MS, Hughes SE (1989) Transplantation of photoreceptors to light-damaged retina. Invest Ophthalmol Vis Sci 30:1684–1690

    PubMed  CAS  Google Scholar 

  • Spence JR, Aycinena JC, Rio-Tsonis K (2007) Fibroblast growth factor-hedgehog interdependence during retina regeneration. Dev Dyn 236:1161–1174

    PubMed  CAS  Google Scholar 

  • Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH (2006) SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 20:1187–1202

    PubMed  CAS  Google Scholar 

  • Tomita M, Adachi Y, Yamada H, Takahashi K, Kiuchi K, Oyaizu H, Ikebukuro K, Kaneda H, Matsumura M, Ikehara S (2002) Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells 20:279–283

    PubMed  CAS  Google Scholar 

  • Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ (2005) Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 23:1579–1588

    PubMed  Google Scholar 

  • Tomita M, Mori T, Maruyama K, Zahir T, Ward M, Umezawa A, Young MJ (2006) A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem Cells 24:2270–2278

    PubMed  CAS  Google Scholar 

  • Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, Kooy D van der (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036

    PubMed  CAS  Google Scholar 

  • Turner DL, Snyder EY, Cepko CL (1990) Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4:833–845

    PubMed  CAS  Google Scholar 

  • Watanabe T, Raff MC (1990) Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 4:461–467

    PubMed  CAS  Google Scholar 

  • Wetts R, Fraser SE (1988) Multipotent precursors can give rise to all major cell types of the frog retina. Science 239:1142–1145

    PubMed  CAS  Google Scholar 

  • Wetts R, Serbedzija GN, Fraser SE (1989) Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev Biol 136:254–263

    PubMed  CAS  Google Scholar 

  • Wojciechowski AB, Englund U, Lundberg C, Warfvinge K (2004) Survival and long distance migration of brain-derived precursor cells transplanted to adult rat retina. Stem Cells 22:27–38

    PubMed  CAS  Google Scholar 

  • Wu P, Tarasenko YI, Gu Y, Huang LY, Coggeshall RE, Yu Y (2002) Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci 5:1271–1278

    PubMed  CAS  Google Scholar 

  • Xu S, Sunderland ME, Coles BL, Kam A, Holowacz T, Ashery-Padan R, Marquardt T, McInnes RR, Kooy D van der (2007) The proliferation and expansion of retinal stem cells require functional Pax6. Dev Biol 304:713–721

    PubMed  CAS  Google Scholar 

  • Yang J, Klassen H, Pries M, Wang W, Nissen MH (2006) Aqueous humor enhances the proliferation of rat retinal precursor cells in culture, and this effect is partially reproduced by ascorbic acid. Stem Cells 24:2766–2775

    PubMed  CAS  Google Scholar 

  • Yang P, Seiler MJ, Aramant RB, Whittemore SR (2002) In vitro isolation and expansion of human retinal progenitor cells. Exp Neurol 177:326–331

    PubMed  CAS  Google Scholar 

  • Yang XJ (2004) Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin Cell Dev Biol 15:91–103

    PubMed  CAS  Google Scholar 

  • Yaron O, Farhy C, Marquardt T, Applebury M, Ashery-Padan R (2006) Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina. Development 133:1367–1378

    PubMed  CAS  Google Scholar 

  • Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH (2000) Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 16:197–205

    PubMed  CAS  Google Scholar 

  • Young RW (1985) Cell differentiation in the retina of the mouse. Anat Rec 212:199–205

    PubMed  CAS  Google Scholar 

  • Zahir T, Klassen H, Young MJ (2005) Effects of ciliary neurotrophic factor on differentiation of late retinal progenitor cells. Stem Cells 23:424–432

    PubMed  CAS  Google Scholar 

  • Zahir T, Klassen H, Tomita M, Young MJ (2006) Sorbitol causes preferential selection of Muller glial precursors from late retinal progenitor cells in vitro. Mol Vis 12:1606–1614

    PubMed  CAS  Google Scholar 

  • Zencak D, Lingbeek M, Kostic C, Tekaya M, Tanger E, Hornfeld D, Jaquet M, Munier FL, Schorderet DF, Lohuizen M van, Arsenijevic Y (2005) Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. J Neurosci 25:5774–5783

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dusan Zencak, Pratyaksha Wirapati, and Dana Wanner for critical discussion and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Arsenijevic.

Additional information

Commercial disclosure: none.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djojosubroto, M.W., Arsenijevic, Y. Retinal stem cells: promising candidates for retina transplantation. Cell Tissue Res 331, 347–357 (2008). https://doi.org/10.1007/s00441-007-0501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0501-8

Keywords

Navigation