Skip to main content

Advertisement

Log in

Epidermal stem cell fate: what can we learn from embryonic stem cells?

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Because of its constant renewal and high propensity for repair, the epidermis is, together with the gut and the hematopoietic system, a tissue of choice to explore stem cell biology. Previous research over many years has revealed the complexity of the epidermis: the heterogeneity of the stem cell compartment, with its rare, slowly cycling, multipotent, hair-follicle, “bulge” stem cells and the more restricted interfollicular, follicle-matrix, and sebaceous-gland stem cells, which in turn generate the large pool of transit-amplifying progeny. Stem cell activity has been used for some considerable time to repair skin injuries, but ex-vivo keratinocyte amplification has its limitations, and grafted skin homeostasis is not totally satisfactory. Human embryonic stem cells raise the hope that the understanding of the developmental steps leading to the generation of epidermal stem cells and the characterization of the key signaling pathways involved in skin morphogenesis (such as p63) will be translated into therapeutic benefit. Our recent results suggest the feasibility not only of identifying but also of amplifying human ES cells, early ectodermal progenitors with an intact multipotent potential that might improve the quality and functionality of grafts, provided that preclinical in vivo studies confirm our expectations from in vitro analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aberdam D (2004) Derivation of keratinocyte progenitor cells and skin formation from embryonic stem cells. Int J Dev Biol 48:203–206

    Article  PubMed  CAS  Google Scholar 

  • Aberdam D, Gambaro K, Rostagno P, Aberdam E, Forest Divonne S de la, Rouleau M (2007) Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle 6:291–294

    PubMed  CAS  Google Scholar 

  • Arnold I, Watt FM (2001) c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol 11:558–568

    Article  PubMed  CAS  Google Scholar 

  • Aubert J, Stavridis MP, Tweedie S, O’Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason JO, Roy D, Smith A (2003) Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-GFP knock-in mice. Proc Natl Acad Sci USA 100 (Suppl 1):11836–11841

    Article  PubMed  CAS  Google Scholar 

  • Bagutti C, Hutter C, Chiquet-Ehrismann R, Fassler R, Watt FM (2001) Dermal fibroblast-derived growth factors restore the ability of beta(1) integrin-deficient embryonal stem cells to differentiate into keratinocytes. Dev Biol 231:321–333

    Article  PubMed  CAS  Google Scholar 

  • Bakkers J, Hild M, Kramer C, Furutani-Seiki M, Hammerschmidt M (2002) Zebrafish deltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev Cell 2:617–627

    Article  PubMed  CAS  Google Scholar 

  • Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373

    Article  PubMed  CAS  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  PubMed  CAS  Google Scholar 

  • Candi E, Rufini A, Terrinoni A, Dinsdale D, Ranalli M, Paradisi A, De Laurenzi V, Spagnoli LG, Catani MV, Ramadan S et al (2006) Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ 13:1037–1047

    Article  PubMed  CAS  Google Scholar 

  • Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446:185–189

    Article  PubMed  CAS  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  • Coraux C, Hilmi C, Rouleau M, Spadafora A, Hinnrasky J, Ortonne JP, Dani C, Aberdam D (2003) Reconstituted skin from murine embryonic stem cells. Curr Biol 13:849–853

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E (2007) Scratching the surface of skin development. Nature 445:834–842

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3:199–209

    Article  PubMed  CAS  Google Scholar 

  • Gallico GG 3rd, O’Connor NE, Compton CC, Kehinde O, Green H (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 311:448–451

    Article  PubMed  Google Scholar 

  • Gambardella L, Barrandon Y (2003) The multifaceted adult epidermal stem cell. Curr Opin Cell Biol 15:771–777

    Article  PubMed  CAS  Google Scholar 

  • Gambaro K, Aberdam E, Virolle T, Aberdam D, Rouleau M (2006) BMP-4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursors. Cell Death Differ 13:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95:605–614

    Article  PubMed  CAS  Google Scholar 

  • Ghazizadeh S, Taichman LB (2001) Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J 20:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Green H, Easley K, Iuchi S (2003) Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natl Acad Sci USA 100:15625–15630

    Article  PubMed  CAS  Google Scholar 

  • Grinnell KL, Yang B, Eckert RL, Bickenbach JR (2007) De-differentiation of mouse interfollicular keratinocytes by the embryonic transcription factor Oct-4. J Invest Dermatol 127:372–380

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton D (1997) Vertebrate neural induction. Annu Rev Neurosci 20:43–60

    Article  PubMed  CAS  Google Scholar 

  • Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Dabelsteen S, Easley K, Rheinwald JG, Green H (2006) Immortalized keratinocyte lines derived from human embryonic stem cells. Proc Natl Acad Sci USA 103:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Ji L, Allen-Hoffmann BL, de Pablo JJ, Palecek SP (2006) Generation and differentiation of human embryonic stem cell-derived keratinocyte precursors. Tissue Eng 12:665–679

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40

    Article  PubMed  CAS  Google Scholar 

  • Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR (2004) p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 18:126–131

    Article  PubMed  CAS  Google Scholar 

  • Koster MI, Dai D, Marinari B, Sano Y, Costanzo A, Karin M, Roop DR (2007a) p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci USA 104:3255–3260

    Article  PubMed  CAS  Google Scholar 

  • Koster MI, Dai D, Roop DR (2007b) Conflicting roles for p63 in skin development and carcinogenesis. Cell Cycle 6:269–273

    PubMed  CAS  Google Scholar 

  • Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437:275–280

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Kimelman D (2002) A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev Cell 2:607–616

    Article  PubMed  CAS  Google Scholar 

  • Liang L, Bickenbach JR (2002) Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells 20:21–31

    Article  PubMed  Google Scholar 

  • Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, Maruggi G, Ferrari G, Provasi E, Bonini C et al (2006) Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 12:1397–1402

    Article  PubMed  CAS  Google Scholar 

  • McKeon F (2004) p63 and the epithelial stem cell: more than status quo? Genes Dev 18:465–469

    Article  PubMed  CAS  Google Scholar 

  • McKeon F, Melino G (2007) Fog of war: the emerging p53 family. Cell Cycle 6:229–232

    PubMed  CAS  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713

    Article  PubMed  CAS  Google Scholar 

  • Niemann C, Owens DM, Hulsken J, Birchmeier W, Watt FM (2002) Expression of deltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129:95–109

    PubMed  CAS  Google Scholar 

  • Petiot A, Conti FJ, Grose R, Revest JM, Hodivala-Dilke KM, Dickson C (2003) A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning. Development 130:5493–5501

    Article  PubMed  CAS  Google Scholar 

  • Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125:1967–1978

    PubMed  CAS  Google Scholar 

  • Rochat A, Kobayashi K, Barrandon Y (1994)Location of stem cells of human hair follicles by clonal analysis. Cell 76:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y (2000) Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 70:1588–1598

    Article  PubMed  CAS  Google Scholar 

  • Senoo M, Pinto F, Crum CP, McKeon F (2007) p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129:523–536

    Article  PubMed  CAS  Google Scholar 

  • Truong AB, Kretz M, Ridky TW, Kimmel R, Khavari PA (2006) p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 20:3185–3197

    Article  PubMed  CAS  Google Scholar 

  • van Bokhoven H, Hamel BC, Bamshad M, Sangiorgi E, Gurrieri F, Duijf PH, Vanmolkot KR, van Beusekom E, van Beersum SE, Celli J et al (2001) p63 Gene mutations in EEC syndrome, limb-mammary syndrome, and isolated split hand-split foot malformation suggest a genotype-phenotype correlation. Am J Hum Genet 69:481–492

    Article  PubMed  Google Scholar 

  • Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR (2001) Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet 28:165–168

    Article  PubMed  CAS  Google Scholar 

  • Watt FM, Lo Celso C, Silva-Vargas V (2006) Epidermal stem cells: an update. Curr Opin Genet Dev 16:518–524

    Article  PubMed  CAS  Google Scholar 

  • White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev 1:131–138

    Article  PubMed  CAS  Google Scholar 

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718

    Article  PubMed  CAS  Google Scholar 

  • Zanet J, Pibre S, Jacquet C, Ramirez A, de Alboran IM, Gandarillas A (2005) Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J Cell Sci 118:1693–1704

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Laure Coulombel for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Aberdam.

Additional information

The work described here was supported by funds from the Sixth EEC Framework Program under the EPISTEM project, l’Agence Nationale pour la Recherche (ANR projets blancs), INSERM, and the Institut National Contre le Cancer (INCa).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aberdam, D. Epidermal stem cell fate: what can we learn from embryonic stem cells?. Cell Tissue Res 331, 103–107 (2008). https://doi.org/10.1007/s00441-007-0497-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0497-0

Keywords

Navigation