Cell and Tissue Research

, Volume 331, Issue 1, pp 125–134 | Cite as

Identification of very small embryonic like (VSEL) stem cells in bone marrow

  • M. Kucia
  • M. Wysoczynski
  • J. Ratajczak
  • M. Z. RatajczakEmail author


Bone marrow (BM) develops in mammals by the end of the second/beginning of the third trimester of gestation and becomes a major hematopoietic organ in postnatal life. The α-chemokine stromal derived factor-1 (SDF-1) to CXCR4 (\( G_{{\alpha i}} \)-protein-coupled seven transmembrane-spanning chemokine receptor) axis plays a major role in BM colonization by stem cells. By the end of the second trimester of gestation, BM becomes colonized by hematopoietic stem cells (HSC), which are chemoattracted from the fetal liver in a CXCR4-SDF-1-dependent manner. Whereas CXCR4 is expressed on HSC, SDF-1 is secreted by BM stroma and osteoblasts that line BM cavities. Mounting evidence indicates that BM also contains rare CXCR4+ pluripotent stem cells (PSC). Recently, our group has identified a population of CXCR4+ very small embryonic like stem cells in murine BM and human cord blood. We hypothesize that these cells are deposited during development in BM as a mobile pool of circulating PSC that play a pivotal role in postnatal tissue turnover, both of non-hematopoietic and hematopoietic tissues.


Oct-4 Nanog Stage-specific embryonic antigen \( G_{{\alpha i}} \)-protein-coupled seven transmembrane-spanning chemokine receptor Very small embryonic like stem cells Embryonic stem cells 


  1. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305PubMedCrossRefGoogle Scholar
  2. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278PubMedCrossRefGoogle Scholar
  3. Anjos-Afonso F, Bonnet D (2007) Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109:1298–1306PubMedCrossRefGoogle Scholar
  4. Asahara T, Murohara T, Sullivan A, Silver M, Zee R van der, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  5. Danner S, Kajahn J, Geismann C, Klink E, Kruse C (2007) Derivation of oocyte-like cells from a clonal pancreatic stem cell line. Mol Hum Reprod 13:11–20PubMedCrossRefGoogle Scholar
  6. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106PubMedCrossRefGoogle Scholar
  7. De Felici M, McLaren A (1982) Isolation of mouse primordial germ cells. Exp Cell Res 142:476–482PubMedCrossRefGoogle Scholar
  8. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981PubMedCrossRefGoogle Scholar
  9. Dyce PW, Zhu H, Craig J, Li J (2004) Stem cells with multilineage potential derived from porcine skin. Biochem Biophys Res Commun 316:651–658PubMedCrossRefGoogle Scholar
  10. Dyce PW, Wen L, Li J (2006) In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 8:384–390PubMedCrossRefGoogle Scholar
  11. Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S (2005) Circulating osteoblast-lineage cells in humans. N Engl J Med 352:1959–1966PubMedCrossRefGoogle Scholar
  12. Francavilla S, Zamboni L (1985) Differentiation of mouse ectopic germinal cells in intra- and perigonadal locations. J Exp Zool 233:101–109PubMedCrossRefGoogle Scholar
  13. Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD, Strieter RM (2006) Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 176:1916–1927PubMedGoogle Scholar
  14. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203PubMedCrossRefGoogle Scholar
  15. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRefGoogle Scholar
  16. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–315PubMedCrossRefGoogle Scholar
  17. Jordan HE (1917) The history of the primordial germ cells in the loggerhead turtle embryo. Proc Natl Acad Sci USA 3:271–275PubMedCrossRefGoogle Scholar
  18. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012PubMedCrossRefGoogle Scholar
  19. Koso H, Ouchi Y, Tabata Y, Aoki Y, Satoh S, Arai K, Watanabe S (2006) SSEA-1 marks regionally restricted immature subpopulations of embryonic retinal progenitor cells that are regulated by the Wnt signaling pathway. Dev Biol 292:265–276PubMedCrossRefGoogle Scholar
  20. Kruse C, Kajahn J, Petschnik AE, Maass A, Klink E, Rapoport DH, Wedel T (2006) Adult pancreatic stem/progenitor cells spontaneously differentiate in vitro into multiple cell lineages and form teratoma-like structures. Ann Anat 188:503–517PubMedCrossRefGoogle Scholar
  21. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M, Ratajczak J, Rezzoug F, Ildstad ST, Bolli R, Ratajczak MZ (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95:1191–1199PubMedCrossRefGoogle Scholar
  22. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19:1118–1127PubMedCrossRefGoogle Scholar
  23. Kucia M, Machalinski B, Ratajczak MZ (2006a) The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp (Wars) 66:331–341Google Scholar
  24. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006b) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869PubMedCrossRefGoogle Scholar
  25. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M, Ildstad ST, Ratajczak J, Shields CB, Ratajczak MZ (2006c) Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20:18–28PubMedCrossRefGoogle Scholar
  26. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303PubMedCrossRefGoogle Scholar
  27. LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601PubMedCrossRefGoogle Scholar
  28. Lamoury FM, Croitoru-Lamoury J, Brew BJ (2006) Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1. Cytotherapy 8:228–242PubMedCrossRefGoogle Scholar
  29. Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, Lin YC, Chen SH, Yu J (2006) Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci USA 103:9530–9535PubMedCrossRefGoogle Scholar
  30. Macchiarini P, Ostertag H (2004) Uncommon primary mediastinal tumours. Lancet Oncol 5:107–118PubMedCrossRefGoogle Scholar
  31. Mann JR (2001) Imprinting in the germ line. Stem Cells 19:287–294PubMedCrossRefGoogle Scholar
  32. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedCrossRefGoogle Scholar
  33. Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847PubMedCrossRefGoogle Scholar
  34. McLaren A (1992) Development of primordial germ cells in the mouse. Andrologia 24:243–247PubMedCrossRefGoogle Scholar
  35. McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15PubMedCrossRefGoogle Scholar
  36. Mendez-Ferrer S, Prat S, Lukic A, Diego A, Badimon JJ, Fuster V, Nadal-Ginard B (2006) ES-like cells in the adult murine heart. IVth ISSCR Annual Meeting, June 2006, TorontoGoogle Scholar
  37. Molyneaux K, Wylie C (2004) Primordial germ cell migration. Int J Dev Biol 48:537–544PubMedCrossRefGoogle Scholar
  38. Nagasawa T (2000) A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol 72:408–411PubMedGoogle Scholar
  39. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W (2006) Derivation of male germ cells from bone marrow stem cells. Lab Invest 86:654–663PubMedCrossRefGoogle Scholar
  40. Oosterhuis JW, Looijenga LH (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5:210–222PubMedCrossRefGoogle Scholar
  41. Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM (2005) Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol 279:336–344PubMedCrossRefGoogle Scholar
  42. Pallante BA, Duignan I, Okin D, Chin A, Bressan MC, Mikawa T, Edelberg JM (2007) Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ Res 100:e1–e11PubMedCrossRefGoogle Scholar
  43. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668PubMedCrossRefGoogle Scholar
  44. Pochampally RR, Smith JR, Ylostalo J, Prockop DJ (2004) Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 103:1647–1652PubMedCrossRefGoogle Scholar
  45. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRefGoogle Scholar
  46. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J (2004) Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells “hide out” in the bone marrow. Leukemia 18:29–40PubMedCrossRefGoogle Scholar
  47. Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M (2007) A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia 21:860–867PubMedGoogle Scholar
  48. Sato S, Yoshimizu T, Sato E, Matsui Y (2003) Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development. Mol Reprod Dev 65:41–50PubMedCrossRefGoogle Scholar
  49. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95:13726–13731PubMedCrossRefGoogle Scholar
  50. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367PubMedGoogle Scholar
  51. Taichman R, Reilly M, Verma R, Ehrenman K, Emerson S (2001) Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol 112:438–448PubMedCrossRefGoogle Scholar
  52. Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67:1772–1784PubMedCrossRefGoogle Scholar
  53. Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI, Hanley NA (2003) Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 21:598–609PubMedCrossRefGoogle Scholar
  54. Upadhyay S, Zamboni L (1982) Ectopic germ cells: natural model for the study of germ cell sexual differentiation. Proc Natl Acad Sci USA 79:6584–6588PubMedCrossRefGoogle Scholar
  55. Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K, Wyderka R, Ochala A, Ratajczak MZ (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110:3213–3220PubMedCrossRefGoogle Scholar
  56. Yamanaka Y, Ralston A, Stephenson RO, Rossant J (2006) Cell and molecular regulation of the mouse blastocyst. Dev Dyn 235:2301–2314PubMedCrossRefGoogle Scholar
  57. Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R, Bartolomei MS (2003) Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 100:12207–12212PubMedCrossRefGoogle Scholar
  58. Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M, Xu X (2006) Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168:1879–1888PubMedCrossRefGoogle Scholar
  59. Zeng L, Rahrmann E, Hu Q, Lund T, Sandquist L, Felten M, O’Brien TD, Zhang J, Verfaillie C (2006) Multipotent adult progenitor cells from swine bone marrow. Stem Cells 24:2355–2366PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. Kucia
    • 1
    • 2
  • M. Wysoczynski
    • 1
    • 2
  • J. Ratajczak
    • 1
    • 2
  • M. Z. Ratajczak
    • 1
    • 2
    Email author
  1. 1.Stem Cell Institute at James Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of PhysiopathologyPomeranian Medical UniversitySzczecinPoland

Personalised recommendations