Skip to main content
Log in

Impact of melatonin receptors on pCREB and clock-gene protein levels in the murine retina

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In several mammalian species, the retina is capable of synthesizing melatonin and contains an autonomous circadian clock that relies on interlocking transcriptional/translational feedback loops involving several clock genes, such as Per1 and Cry2. Our previous investigations have shown remarkable differences in retinae of melatonin-deficient (C57BL) and melatonin-proficient (C3H) mice with regard to the protein levels of PER1, CRY2, and phosphorylated (p) cyclic AMP response element binding protein (CREB). To elucidate the melatonin receptor type possibly responsible for these differences, we have performed immunocytochemical analyses for PER1, CRY2, and pCREB in retinae of melatonin-proficient wild type (WT) mice and mice with targeted deletions of the MT1 receptor (MelaaBB) or the MT1 and MT2 receptors (Melaabb) at four different time points. Immunoreactions for PER1, CRY2 and pCREB were localized to the nuclei of cells in the inner nuclear layer (INL) and ganglion cell layer (GC) of all strains. Surprisingly, in MelaaBB and Melaabb the day/night rhythm of pCREB, PER1, and CRY2 levels was not abolished, but the maxima and minima of PER1 were 180° out of phase as compared to the WT. These data suggest that MT1 and MT2 melatonin receptors are not necessary to maintain rhythmic changes in clock-gene protein levels in the murine retina, but, as shown for PER1, appear to be involved in internal synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allada R, Emery P, Takahashi JS, Rosbash M (2001) Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci 24:1091–1119

    Article  PubMed  CAS  Google Scholar 

  • Besharse JC, Dunis DA (1983) Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science 219:1341–1343

    Article  PubMed  CAS  Google Scholar 

  • Besharse JC, Iuvone PM (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305:133–135

    Article  PubMed  CAS  Google Scholar 

  • Boatright JH, Rubim NM, Iuvone PM (1994) Regulation of endogenous dopamine release in amphibian retina by melatonin: the role of GABA. Neurosci 11:1013–1018

    CAS  Google Scholar 

  • Dinet V, Ansari N, Torres-Farfan C, Korf HW (2007) Clock gene expression in the retina of melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. J Pineal Res 42:83–91

    Article  PubMed  CAS  Google Scholar 

  • Doyle SE, Grace MS, Mclvor W, Menaker M (2002a) Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci 19:593–601

    Article  PubMed  Google Scholar 

  • Doyle SE, Mclvor W, Menaker M (2002b) Circadian rhythmicity in dopamine content of mammalian retina: role of the photoreceptors. J Neurochem 83:211–219

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML (1983) Melatonin is a potent modulator of dopamine release in the retina. Nature 306:782–784

    Article  PubMed  CAS  Google Scholar 

  • Fujieda H, Hamadanizadeh SA, Wankiewicz E, Pang SF, Brown GM (1999) Expression of mt1 melatonin receptor in rat retina: evidence for multiple cell targets for melatonin. Neuroscience 93:793–799

    Article  PubMed  CAS  Google Scholar 

  • Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR (2003) Targeted disruption of the mouse Mel (1b) melatonin receptor. Mol Cell Biol 23:1054–1060

    Article  PubMed  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 467

    Google Scholar 

  • Korf HW, Stehle JH (2002) The circadian system: circuits-cells-clock genes. Cell Tissue Res 309:1–2

    Article  PubMed  Google Scholar 

  • Li GL, Li P, Yang XL (2001) Melatonin modulates gamma-aminobutyric acid (A) receptor-mediated currents on isolated carp retinal neurons. Neurosci Lett 301:49–53

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA 95:6097–6102

    Article  PubMed  CAS  Google Scholar 

  • Okamura H, Yamaguchi S, Yagita K (2002) Molecular machinery of the circadian clock in mammals. Cell Tissue Res 309:47–56

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13:1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain; the Mel1b melatonin receptor. Proc Natl Acad Sci USA 92:8734–8738

    Article  PubMed  CAS  Google Scholar 

  • Roseboom PH, Namboodiri MA, Zimonjic DB, Popoescu NC, Rodriguez IR, Gastel JA, Klein DC (1998) Natural melatonin “knockdown” in C57bl/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Mol Brain Res 63:189–197

    Article  PubMed  CAS  Google Scholar 

  • Ruan G, Zhang DQ, Zhou T, Yamazaki S, McMahon DG (2006) Circadian organization of the mammalian retina. Proc Natl Acad Sci USA 103:9703–9708

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Oishi K, Shiraishi M, Hamano S, Otsuka H, Miyake Y, Ishida N (2000) Two circadian oscillatory mechanisms in the mammalian retina. Neuroreport 11:3995–3997

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Liu C, Tosini G (2004) Circadian rhythms in the retina of rats with photoreceptor degeneration. J Neurochem 90:1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Savaskan E, Wirz-Justice A, Olivieri G, Pache M, Krauchi K, Brydon L, Jockers R, Muller-Spahn F, Meyer P (2002) Distribution of melatonin MT1 receptor immunoreactivity in human retina. J Histochem Cytochem 50:519–526

    PubMed  CAS  Google Scholar 

  • Scher J, Wankiewicz E, Brown GM, Fujieda H (2002) MT(1) melatonin receptor in the human retina: expression and localization. Invest Ophthalmol Vis Sci 43:889–897

    PubMed  Google Scholar 

  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Steenhard BM, Besharse JC (2000) Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine. J Neurosci 20:8572–8577

    PubMed  CAS  Google Scholar 

  • Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–10011

    Article  PubMed  CAS  Google Scholar 

  • Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421

    Article  PubMed  CAS  Google Scholar 

  • Tosini G, Menaker M (1998a) Multioscillatory circadian organization in a vertebrate,Iguana iguana. J Neurosci 18:1105–1114

    PubMed  CAS  Google Scholar 

  • Tosini G, Menaker M (1998b) The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res 789:221–228

    Article  PubMed  CAS  Google Scholar 

  • White MP, Fisher LJ (1989) Effects of exogenous melatonin on circadian disc shedding in the albino rat retina. Vision Res 29:167–179

    Article  PubMed  CAS  Google Scholar 

  • Wiechmann AF, Yang XL, Wu SM, Hollyfield JG (1988) Melatonin enhances horizontal cell sensitivity in salamander retina. Brain Res 453:377–380

    Article  PubMed  CAS  Google Scholar 

  • Wiechmann AF, Udin SB, Summers Rada JA (2004) Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus leavis. Exp Eye Res 79:585–594

    Article  PubMed  CAS  Google Scholar 

  • Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715

    Article  PubMed  CAS  Google Scholar 

  • Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci USA 103:6386–6391

    Article  PubMed  CAS  Google Scholar 

  • Zawilska JB, Berezinska M, Rosiak J, Vivien-Roels B, Nowak JZ (2003) The relationship between melatonin and dopamine rhythms in the duck retina. Neurosci Lett 347:37–40

    Article  PubMed  CAS  Google Scholar 

  • Zhang DQ, Zhou T, Ruan GX, McMahon DG (2005) Circadian rhythm of Period1 clock gene expression in NOS amacrine cells of the mouse retina. Brain Res 1050:101–109

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst-Werner Korf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinet, V., Korf, HW. Impact of melatonin receptors on pCREB and clock-gene protein levels in the murine retina. Cell Tissue Res 330, 29–34 (2007). https://doi.org/10.1007/s00441-007-0468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0468-5

Keywords

Navigation