Skip to main content

Advertisement

Log in

Biological principals and clinical potentials of limbal epithelial stem cells

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In this review, we describe a population of adult stem cells that are currently being successfully used in the clinic to treat blinding ocular surface disease, namely limbal epithelial stem cells (LESC). The function and characteristics of LESC and the challenges faced in making use of their therapeutic potential will be examined. The cornea on the front surface of the eye provides our window on the world. The consistency and functionality of the outer-most corneal epithelium is essential for vision. A population of LESC are responsible for replenishing the epithelium throughout life by providing a constant supply of daughter cells that replace those constantly removed from the ocular surface during normal wear and tear and following injury. LESC deficiency results in corneal inflammation, opacification, vascularisation and severe discomfort. The transplantation of cultured LESC is one of only a few examples of the successful use of adult stem cell therapy in patients. The clinical precedence for the use of stem cell therapy and the ready accessibility of a transparent stem cell niche make the cornea a unique model for the study of adult stem cells in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boulton M, Albon J (2004) Stem cells in the eye. Int J Biochem Cell Biol 36:643–657

    Article  PubMed  CAS  Google Scholar 

  • Bullock AJ, Higham MC, Macneil S (2006) Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes. Tissue Eng 12:245–255

    Article  PubMed  CAS  Google Scholar 

  • Chee KYH, Kicic A, Wiffen SJ (2006) Limbal stem cells: the search for a marker. Clin Exp Ophthalmol 34:64–73

    Article  PubMed  Google Scholar 

  • Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ (2004)Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22:355–366

    Article  PubMed  Google Scholar 

  • Chen JJ, Tseng SC (1991) Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci 32:2219–2233

    PubMed  CAS  Google Scholar 

  • Clinch TE, Goins KM, Cobo LM (1992) Treatment of contact lens-related ocular surface disorders with autologous conjunctival transplantation. Ophthalmology 99:634–638

    PubMed  CAS  Google Scholar 

  • Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  PubMed  CAS  Google Scholar 

  • Daniels JT, Dart JK, Tuft SJ, Khaw PT (2001) Corneal stem cells in review. Wound Repair Regen 9:483–494

    Article  PubMed  CAS  Google Scholar 

  • Daniels JT, Harris A, Mason C (2007) Corneal epithelial stem cells in health and disease. Stem Cell Rev 2:247–254

    Article  Google Scholar 

  • Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229:560–561

    Article  PubMed  CAS  Google Scholar 

  • Daya SM, Watson A, Sharpe JR, Giledi O, Rowe A, Martin R, James SE (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477

    Article  PubMed  Google Scholar 

  • De Paiva CS, Pflugfelder SC, Li DQ (2006) Cell size correlates with phenotype and proliferative capacity in human corneal epithelial cells. Stem Cells 24:368–375

    Article  PubMed  Google Scholar 

  • Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M (2005) Isoforms of {Delta}Np63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA 102:9523–9528

    Article  PubMed  Google Scholar 

  • Doyle LA, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358

    Article  PubMed  Google Scholar 

  • Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44:415–425

    Article  PubMed  CAS  Google Scholar 

  • Dua HS, Saini JS, Azuara-Blanco A, Gupta P (2000) Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol 48:83–92

    PubMed  CAS  Google Scholar 

  • Dua HS, Joseph A, Shanmuganathan VA, Jones RE (2003) Stem cell differentiation and the effects of deficiency. Eye 17:877–885

    Article  PubMed  CAS  Google Scholar 

  • Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89:529–532

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Chikama T, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea 18:73–79

    Article  PubMed  CAS  Google Scholar 

  • Geerling G, Maclennan S, Hartwig D (2004) Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol 88:1467–1474

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MF, Bron AJ (1982) Limbal palisades of Vogt. Trans Am Ophthalmol Soc 80:155–171

    PubMed  CAS  Google Scholar 

  • Gomes JA, Santos MS, Ventura AS, Donato WB, Cunha MC, Hofling-Lima AL (2003) Amniotic membrane with living related corneal limbal/conjunctival allograft for ocular surface reconstruction in Stevens-Johnson syndrome. Arch Ophthalmol 121:1369–1374

    Article  PubMed  Google Scholar 

  • Grueterich M, Espana EM, Tseng SC (2002a) Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane. Invest Ophthalmol Vis Sci 43:63–71

    Google Scholar 

  • Grueterich M, Espana EM, Touhami A, Ti SE, Tseng SC (2002b) Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology 109:1547–1552

    Article  Google Scholar 

  • Harkin DG, Barnard Z, Gillies P, Ainscough SL, Apel AJ (2004) Analysis of p63 and cytokeratin expression in a cultivated limbal autograft used in the treatment of limbal stem cell deficiency. Br J Ophthalmol 88:1154–1158

    Article  PubMed  CAS  Google Scholar 

  • Hayashi R, Yamato M, Sugiyama H, Sumide T, Yang J, Okano T, Tano Y, Nishida K (2007) N-cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells 25:289–296

    Article  PubMed  CAS  Google Scholar 

  • Higham MC, Dawson R, Szabo M, Short R, Haddow DB, MacNeil S (2003) Development of a stable chemically defined surface for the culture of human keratinocytes under serum-free conditions for clinical use. Tissue Eng 9:919–930

    Article  PubMed  CAS  Google Scholar 

  • Holland EJ (1996) Epithelial transplantation for severe ocular surface disease. Trans Am Ophthalmol Soc 94:677–743

    PubMed  CAS  Google Scholar 

  • Holland EJ, Schwartz GS (1996) The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea 15:549–556

    Article  PubMed  CAS  Google Scholar 

  • Holland EJ, AR Djalilian, Schwartz GS (2003) Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology 110:125–130

    Article  PubMed  Google Scholar 

  • Huang AJ, Tseng SC (1991) Corneal epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci 32:96–105

    PubMed  CAS  Google Scholar 

  • Ilari L, Daya SM (2002) Long-term outcomes of keratolimbal allograft for the treatment of severe ocular surface disorders. Ophthalmology 109:1278–1284

    Article  PubMed  Google Scholar 

  • Jenkins C, Tuft S, Liu C, Buckley R (1993) Limbal tarnsplantation in the management of chronic contact lens-associated epitheliopathy. Eye 7:629–633

    PubMed  Google Scholar 

  • Kasper M (1992) Patterns of cytokeratins and vimentin in guinea-pig and mouse eye tissue—evidence for regional variations in intermediate filament expression in limbal epithelium. Acta Histochem 93:319–332

    PubMed  CAS  Google Scholar 

  • Kolega J, Manabe M, Sun TT (1989) Basement membrane heterogeneity and variation in corneal epithelial differentiation. Differentiation 42:54–63

    Article  PubMed  CAS  Google Scholar 

  • Lauweryns B, Oord JJ van den, De Vos R, Missotten L (1993) A new epithelial cell type in the human cornea. Invest Ophthalmol Vis Sci 34:1983–1990

    PubMed  CAS  Google Scholar 

  • Lavker RM, Sun TT (2000) Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci USA 97:13473–13475

    Article  PubMed  CAS  Google Scholar 

  • Li W, Hayashida Y, Chen YT, Tseng SC (2007) Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 17:26–36

    Article  PubMed  Google Scholar 

  • Ljubimov AV, Burgeson RE, Butkowski RJ, Michael AF, Sun TT, Kenney MC (1995) Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Lab Invest 72:461–473

    PubMed  CAS  Google Scholar 

  • Lohrum MAE, Vousden KH (2000) Regulation and function of the p53-related proteins: same family, different rules. Trends Cell Biol 10:197–202

    Article  PubMed  CAS  Google Scholar 

  • Mathers WD, Jester JV, Lemp MA (1988) Return of human corneal sensitivity after penetrating keratoplasty. Arch Ophthalmol 106:210–211

    PubMed  CAS  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Inatomi T, Sotozono C, Ang LPK, Koizumi N, Yokoi N, Kinoshita S (2006) Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology 113:1756–1772

    Google Scholar 

  • Niederer RL, Perumal D, Sherwin T, McGhee CN (2007) Corneal innervation and cellular changes after corneal transplantation: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci 48:621–626

    Article  PubMed  Google Scholar 

  • Nishida K, Kinoshita S, Ohashi Y, Kuwayama Y, Yamamoto S (1995) Ocular surface abnormalities in aniridia. Am J Ophthalmol 120:368–375

    PubMed  CAS  Google Scholar 

  • Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsieve cell culture surface. Transplantation 77:379–385

    Article  PubMed  Google Scholar 

  • Notara MBN, Deshpande P, Haddow DB, MacNeil S, Daniels JT (2007) Plasma polymer coated surfaces for serum-free culture of limbal epithelium for ocular surface disease. J Mater Sci Mater Med 18:329–338

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated human epithelium. Lancet 349:990–993

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145:769–782

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 98:3156–3161

    Article  PubMed  CAS  Google Scholar 

  • Poon AC, Geerling G, Dart JK, Fraenkel GE, Daniels JT (2001) Autologous serum eye drops for dry eyes and epithelial defects: clinical and in-vitro toxicity studies. Br J Ophthalmol 85:1188–1197

    Article  PubMed  CAS  Google Scholar 

  • Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020

    PubMed  CAS  Google Scholar 

  • Puangsricharern V, Tseng SC (1995) Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 102:1476–1485

    PubMed  CAS  Google Scholar 

  • Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, Pellegrini G (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72:1478–1485

    Article  PubMed  CAS  Google Scholar 

  • Ramaesh T, Collinson JM, Ramaesh K, Kaufman MH, West JD, Dhillon B (2003) Corneal abnormalities in Pax6(+/−) small eye mice mimic human aniridia-related keratopathy. Invest Ophthalmol Vis Sci 44:1871–1878

    Article  PubMed  Google Scholar 

  • Ramaesh T, Ramaesh K, Leask R, Springbett A, Riley SC, Dhillon B, West JD (2006) Increased apoptosis and abnormal wound-healing responses in the heterozygous Pax6(+/−) mouse cornea. Invest Ophthalmol Vis Sci 47:1911–1917

    Article  PubMed  Google Scholar 

  • Rao GN, John T, Ishida N, Aquavella JV (1985) Recovery of corneal sensitivity in grafts following penetrating keratoplasty. Ophthalmology 92:1408–1411

    PubMed  CAS  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    Article  PubMed  CAS  Google Scholar 

  • Romano AC, Espana EM, Yoo SH, Budak MT, Wolosin JM, Tseng SC (2003) Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry. Invest Ophthalmol Vis Sci 44:5125–5129

    Article  PubMed  Google Scholar 

  • Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62

    Article  PubMed  CAS  Google Scholar 

  • Schlotzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81:247–264

    PubMed  Google Scholar 

  • Schwab IR (1999) Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 97:891–986

    PubMed  CAS  Google Scholar 

  • Shanmuganathan VA, Foster T, Kulkarni BB, Hopkinson A, Gray T, Powe DG, Lowe J, Dua HS (2007) Morphological characteristics of the limbal epithelial crypt. Br J Ophthalmol 91:514–519

    Article  PubMed  Google Scholar 

  • Shen MC, Pan YV, Wagner MS, Hauch KD, Castner DG,Ratner BD, Horbett TA (2001) Inhibition of monocyte adhesion and fibrinogen adsorption on glow discharge plasma deposited tetraethylene glycol dimethyl ether. J Biomater Sci Polym Ed 12:961–978

    Article  PubMed  CAS  Google Scholar 

  • Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT (2007a) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in-vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25:1402–1409

    Article  PubMed  Google Scholar 

  • Shortt AJ et al. (2007b) Transplantation of ex-vivo cultured limbal epithelial stem cells—a review of current techniques and clinical results. Surv Ophthalmol (in press)

  • Solomon A, Ellies P, Anderson DF, Touhami A, Grueterich M, Espana EM, Ti SE, Goto E, Feuer WJ, Tseng SC (2002) Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. Ophthalmology 109:1159–1166

    Article  PubMed  Google Scholar 

  • Spelsberg H, Sundmacher R (2005) Early emergency treatment of severe alkali bum with a glued-on hard contact lens: a case report. Klin Monatsbl Augenheilkd 222:905–909

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Higham M, Layton C, Haycock J, Short R, MacNeil S (2004) Developments in xenobiotic-free culture of human keratinocytes for clinical use. Wound Repair Regen 12:626–634

    Article  PubMed  Google Scholar 

  • Townsend WM (1991) The limbal palisades of Vogt. Trans Am Ophthalmol Soc 89:721–756

    PubMed  CAS  Google Scholar 

  • Tsai RJ-F, Li L-M, Chen J-K (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    Article  PubMed  CAS  Google Scholar 

  • Tseng SC, Prabhasawat P, Barton K, Gray T, Meller D (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441

    PubMed  CAS  Google Scholar 

  • Watanabe K, Nishida K, Yamato M, Umemoto T, Sumide T, Yamamoto K, Maeda N, Watanabe H, Okano T, Tano Y (2004) Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 565:6–20

    Article  PubMed  CAS  Google Scholar 

  • Wiley L, SundarRaj N, Sun TT, Thoft RA (1991) Regional heterogeneity in human corneal and limbal epithelia: an immunohistochemical evaluation. Invest Ophthalmol Vis Sci 32:594–602

    PubMed  CAS  Google Scholar 

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie T. Daniels.

Additional information

The authors thank the Special Trustees of Moorfields Eye Hospital (J.T.D.) and the BBSRC (M.N.) for financial support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Notara, M., Daniels, J.T. Biological principals and clinical potentials of limbal epithelial stem cells. Cell Tissue Res 331, 135–143 (2008). https://doi.org/10.1007/s00441-007-0458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0458-7

Keywords

Navigation