Cell and Tissue Research

, Volume 331, Issue 1, pp 135–143 | Cite as

Biological principals and clinical potentials of limbal epithelial stem cells

  • Maria Notara
  • Julie T. DanielsEmail author


In this review, we describe a population of adult stem cells that are currently being successfully used in the clinic to treat blinding ocular surface disease, namely limbal epithelial stem cells (LESC). The function and characteristics of LESC and the challenges faced in making use of their therapeutic potential will be examined. The cornea on the front surface of the eye provides our window on the world. The consistency and functionality of the outer-most corneal epithelium is essential for vision. A population of LESC are responsible for replenishing the epithelium throughout life by providing a constant supply of daughter cells that replace those constantly removed from the ocular surface during normal wear and tear and following injury. LESC deficiency results in corneal inflammation, opacification, vascularisation and severe discomfort. The transplantation of cultured LESC is one of only a few examples of the successful use of adult stem cell therapy in patients. The clinical precedence for the use of stem cell therapy and the ready accessibility of a transparent stem cell niche make the cornea a unique model for the study of adult stem cells in health and disease.


Limbal epithelial stem cells Limbal epithelial stem cell deficiency Ocular surface disease Limbal stem cell niche Transplantation Human 


  1. Boulton M, Albon J (2004) Stem cells in the eye. Int J Biochem Cell Biol 36:643–657PubMedCrossRefGoogle Scholar
  2. Bullock AJ, Higham MC, Macneil S (2006) Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes. Tissue Eng 12:245–255PubMedCrossRefGoogle Scholar
  3. Chee KYH, Kicic A, Wiffen SJ (2006) Limbal stem cells: the search for a marker. Clin Exp Ophthalmol 34:64–73PubMedCrossRefGoogle Scholar
  4. Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ (2004)Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22:355–366PubMedCrossRefGoogle Scholar
  5. Chen JJ, Tseng SC (1991) Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci 32:2219–2233PubMedGoogle Scholar
  6. Clinch TE, Goins KM, Cobo LM (1992) Treatment of contact lens-related ocular surface disorders with autologous conjunctival transplantation. Ophthalmology 99:634–638PubMedGoogle Scholar
  7. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209PubMedCrossRefGoogle Scholar
  8. Daniels JT, Dart JK, Tuft SJ, Khaw PT (2001) Corneal stem cells in review. Wound Repair Regen 9:483–494PubMedCrossRefGoogle Scholar
  9. Daniels JT, Harris A, Mason C (2007) Corneal epithelial stem cells in health and disease. Stem Cell Rev 2:247–254CrossRefGoogle Scholar
  10. Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229:560–561PubMedCrossRefGoogle Scholar
  11. Daya SM, Watson A, Sharpe JR, Giledi O, Rowe A, Martin R, James SE (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477PubMedCrossRefGoogle Scholar
  12. De Paiva CS, Pflugfelder SC, Li DQ (2006) Cell size correlates with phenotype and proliferative capacity in human corneal epithelial cells. Stem Cells 24:368–375PubMedCrossRefGoogle Scholar
  13. Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M (2005) Isoforms of {Delta}Np63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA 102:9523–9528PubMedCrossRefGoogle Scholar
  14. Doyle LA, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358PubMedCrossRefGoogle Scholar
  15. Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44:415–425PubMedCrossRefGoogle Scholar
  16. Dua HS, Saini JS, Azuara-Blanco A, Gupta P (2000) Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol 48:83–92PubMedGoogle Scholar
  17. Dua HS, Joseph A, Shanmuganathan VA, Jones RE (2003) Stem cell differentiation and the effects of deficiency. Eye 17:877–885PubMedCrossRefGoogle Scholar
  18. Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89:529–532PubMedCrossRefGoogle Scholar
  19. Fukuda K, Chikama T, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea 18:73–79PubMedCrossRefGoogle Scholar
  20. Geerling G, Maclennan S, Hartwig D (2004) Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol 88:1467–1474PubMedCrossRefGoogle Scholar
  21. Goldberg MF, Bron AJ (1982) Limbal palisades of Vogt. Trans Am Ophthalmol Soc 80:155–171PubMedGoogle Scholar
  22. Gomes JA, Santos MS, Ventura AS, Donato WB, Cunha MC, Hofling-Lima AL (2003) Amniotic membrane with living related corneal limbal/conjunctival allograft for ocular surface reconstruction in Stevens-Johnson syndrome. Arch Ophthalmol 121:1369–1374PubMedCrossRefGoogle Scholar
  23. Grueterich M, Espana EM, Tseng SC (2002a) Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane. Invest Ophthalmol Vis Sci 43:63–71Google Scholar
  24. Grueterich M, Espana EM, Touhami A, Ti SE, Tseng SC (2002b) Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology 109:1547–1552CrossRefGoogle Scholar
  25. Harkin DG, Barnard Z, Gillies P, Ainscough SL, Apel AJ (2004) Analysis of p63 and cytokeratin expression in a cultivated limbal autograft used in the treatment of limbal stem cell deficiency. Br J Ophthalmol 88:1154–1158PubMedCrossRefGoogle Scholar
  26. Hayashi R, Yamato M, Sugiyama H, Sumide T, Yang J, Okano T, Tano Y, Nishida K (2007) N-cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells 25:289–296PubMedCrossRefGoogle Scholar
  27. Higham MC, Dawson R, Szabo M, Short R, Haddow DB, MacNeil S (2003) Development of a stable chemically defined surface for the culture of human keratinocytes under serum-free conditions for clinical use. Tissue Eng 9:919–930PubMedCrossRefGoogle Scholar
  28. Holland EJ (1996) Epithelial transplantation for severe ocular surface disease. Trans Am Ophthalmol Soc 94:677–743PubMedGoogle Scholar
  29. Holland EJ, Schwartz GS (1996) The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea 15:549–556PubMedCrossRefGoogle Scholar
  30. Holland EJ, AR Djalilian, Schwartz GS (2003) Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology 110:125–130PubMedCrossRefGoogle Scholar
  31. Huang AJ, Tseng SC (1991) Corneal epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci 32:96–105PubMedGoogle Scholar
  32. Ilari L, Daya SM (2002) Long-term outcomes of keratolimbal allograft for the treatment of severe ocular surface disorders. Ophthalmology 109:1278–1284PubMedCrossRefGoogle Scholar
  33. Jenkins C, Tuft S, Liu C, Buckley R (1993) Limbal tarnsplantation in the management of chronic contact lens-associated epitheliopathy. Eye 7:629–633PubMedGoogle Scholar
  34. Kasper M (1992) Patterns of cytokeratins and vimentin in guinea-pig and mouse eye tissue—evidence for regional variations in intermediate filament expression in limbal epithelium. Acta Histochem 93:319–332PubMedGoogle Scholar
  35. Kolega J, Manabe M, Sun TT (1989) Basement membrane heterogeneity and variation in corneal epithelial differentiation. Differentiation 42:54–63PubMedCrossRefGoogle Scholar
  36. Lauweryns B, Oord JJ van den, De Vos R, Missotten L (1993) A new epithelial cell type in the human cornea. Invest Ophthalmol Vis Sci 34:1983–1990PubMedGoogle Scholar
  37. Lavker RM, Sun TT (2000) Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci USA 97:13473–13475PubMedCrossRefGoogle Scholar
  38. Li W, Hayashida Y, Chen YT, Tseng SC (2007) Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 17:26–36PubMedCrossRefGoogle Scholar
  39. Ljubimov AV, Burgeson RE, Butkowski RJ, Michael AF, Sun TT, Kenney MC (1995) Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Lab Invest 72:461–473PubMedGoogle Scholar
  40. Lohrum MAE, Vousden KH (2000) Regulation and function of the p53-related proteins: same family, different rules. Trends Cell Biol 10:197–202PubMedCrossRefGoogle Scholar
  41. Mathers WD, Jester JV, Lemp MA (1988) Return of human corneal sensitivity after penetrating keratoplasty. Arch Ophthalmol 106:210–211PubMedGoogle Scholar
  42. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713PubMedCrossRefGoogle Scholar
  43. Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298PubMedCrossRefGoogle Scholar
  44. Nakamura T, Inatomi T, Sotozono C, Ang LPK, Koizumi N, Yokoi N, Kinoshita S (2006) Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology 113:1756–1772Google Scholar
  45. Niederer RL, Perumal D, Sherwin T, McGhee CN (2007) Corneal innervation and cellular changes after corneal transplantation: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci 48:621–626PubMedCrossRefGoogle Scholar
  46. Nishida K, Kinoshita S, Ohashi Y, Kuwayama Y, Yamamoto S (1995) Ocular surface abnormalities in aniridia. Am J Ophthalmol 120:368–375PubMedGoogle Scholar
  47. Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsieve cell culture surface. Transplantation 77:379–385PubMedCrossRefGoogle Scholar
  48. Notara MBN, Deshpande P, Haddow DB, MacNeil S, Daniels JT (2007) Plasma polymer coated surfaces for serum-free culture of limbal epithelium for ocular surface disease. J Mater Sci Mater Med 18:329–338PubMedCrossRefGoogle Scholar
  49. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated human epithelium. Lancet 349:990–993PubMedCrossRefGoogle Scholar
  50. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145:769–782PubMedCrossRefGoogle Scholar
  51. Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 98:3156–3161PubMedCrossRefGoogle Scholar
  52. Poon AC, Geerling G, Dart JK, Fraenkel GE, Daniels JT (2001) Autologous serum eye drops for dry eyes and epithelial defects: clinical and in-vitro toxicity studies. Br J Ophthalmol 85:1188–1197PubMedCrossRefGoogle Scholar
  53. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020PubMedGoogle Scholar
  54. Puangsricharern V, Tseng SC (1995) Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 102:1476–1485PubMedGoogle Scholar
  55. Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, Pellegrini G (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72:1478–1485PubMedCrossRefGoogle Scholar
  56. Ramaesh T, Collinson JM, Ramaesh K, Kaufman MH, West JD, Dhillon B (2003) Corneal abnormalities in Pax6(+/−) small eye mice mimic human aniridia-related keratopathy. Invest Ophthalmol Vis Sci 44:1871–1878PubMedCrossRefGoogle Scholar
  57. Ramaesh T, Ramaesh K, Leask R, Springbett A, Riley SC, Dhillon B, West JD (2006) Increased apoptosis and abnormal wound-healing responses in the heterozygous Pax6(+/−) mouse cornea. Invest Ophthalmol Vis Sci 47:1911–1917PubMedCrossRefGoogle Scholar
  58. Rao GN, John T, Ishida N, Aquavella JV (1985) Recovery of corneal sensitivity in grafts following penetrating keratoplasty. Ophthalmology 92:1408–1411PubMedGoogle Scholar
  59. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343PubMedCrossRefGoogle Scholar
  60. Romano AC, Espana EM, Yoo SH, Budak MT, Wolosin JM, Tseng SC (2003) Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry. Invest Ophthalmol Vis Sci 44:5125–5129PubMedCrossRefGoogle Scholar
  61. Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62PubMedCrossRefGoogle Scholar
  62. Schlotzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81:247–264PubMedGoogle Scholar
  63. Schwab IR (1999) Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 97:891–986PubMedGoogle Scholar
  64. Shanmuganathan VA, Foster T, Kulkarni BB, Hopkinson A, Gray T, Powe DG, Lowe J, Dua HS (2007) Morphological characteristics of the limbal epithelial crypt. Br J Ophthalmol 91:514–519PubMedCrossRefGoogle Scholar
  65. Shen MC, Pan YV, Wagner MS, Hauch KD, Castner DG,Ratner BD, Horbett TA (2001) Inhibition of monocyte adhesion and fibrinogen adsorption on glow discharge plasma deposited tetraethylene glycol dimethyl ether. J Biomater Sci Polym Ed 12:961–978PubMedCrossRefGoogle Scholar
  66. Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT (2007a) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in-vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25:1402–1409PubMedCrossRefGoogle Scholar
  67. Shortt AJ et al. (2007b) Transplantation of ex-vivo cultured limbal epithelial stem cells—a review of current techniques and clinical results. Surv Ophthalmol (in press)Google Scholar
  68. Solomon A, Ellies P, Anderson DF, Touhami A, Grueterich M, Espana EM, Ti SE, Goto E, Feuer WJ, Tseng SC (2002) Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. Ophthalmology 109:1159–1166PubMedCrossRefGoogle Scholar
  69. Spelsberg H, Sundmacher R (2005) Early emergency treatment of severe alkali bum with a glued-on hard contact lens: a case report. Klin Monatsbl Augenheilkd 222:905–909PubMedCrossRefGoogle Scholar
  70. Sun T, Higham M, Layton C, Haycock J, Short R, MacNeil S (2004) Developments in xenobiotic-free culture of human keratinocytes for clinical use. Wound Repair Regen 12:626–634PubMedCrossRefGoogle Scholar
  71. Townsend WM (1991) The limbal palisades of Vogt. Trans Am Ophthalmol Soc 89:721–756PubMedGoogle Scholar
  72. Tsai RJ-F, Li L-M, Chen J-K (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93PubMedCrossRefGoogle Scholar
  73. Tseng SC, Prabhasawat P, Barton K, Gray T, Meller D (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441PubMedGoogle Scholar
  74. Watanabe K, Nishida K, Yamato M, Umemoto T, Sumide T, Yamamoto K, Maeda N, Watanabe H, Okano T, Tano Y (2004) Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 565:6–20PubMedCrossRefGoogle Scholar
  75. Wiley L, SundarRaj N, Sun TT, Thoft RA (1991) Regional heterogeneity in human corneal and limbal epithelia: an immunohistochemical evaluation. Invest Ophthalmol Vis Sci 32:594–602PubMedGoogle Scholar
  76. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718PubMedCrossRefGoogle Scholar
  77. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Cells for Sight Transplantation and Research Programme, Ocular Repair and Regeneration Biology UnitInstitute of OphthalmologyLondonUK

Personalised recommendations