Skip to main content
Log in

Comparison of morphological effects of PGE2 and TGFβ on osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

RANKL, in the presence of M-CSF, induces the development and fusion of TRAP+ osteoclasts in mouse bone marrow cultures at 3–5 days. Early during culture (day 3), most cells are small (up to six nuclei). At lower cell densities, these osteoclasts exhibit a rounded morphology with cytoplasm extending around the cells but, at higher densities, this changes to a stellate morphology with the cytoplasm being retracted around the nuclei with numerous localised cytoplasmic extensions. Under optimal conditions, osteoclast fusion results in conglomerates of many cells, which become large cytoplasmic masses on day 4. PGE2 and TGFβ have both been shown to increase osteoclast development in this model and their effects on the morphology of osteoclasts during fusion and differentiation have been compared under all these conditions. PGE2 or TGFβ increase osteoclast numbers and size and also the number of nuclei, indicating increased osteoclast development and fusion. TGFβ increases the size of rounded osteoclasts (with respect to the number of nuclei) more than PGE2, suggesting that TGFβ increases cytoplasmic extension. TGFβ increases the size and number of nuclei in stellate cells but particularly increases the number and length of the cytoplasmic extensions, in contrast to PGE2. Fusion of these extensions with other osteoclasts results in large networks of interconnected cells. On day 4, spreading cells develop but these are still interconnected by cytoplasmic links, a phenomenon not seen in control wells or after treatment with PGE2. TGFβ is more effective than PGE2 in increasing fusion in the formation of cell conglomerates and cytoplasmic masses. PGE2 decreases overall cell density resulting in additional indirect effects on osteoclast numbers and morphology. However, PGE2 particularly promotes the formation of large mature spreading osteoclasts later during culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blanqué R, Gardner CR (2000) TNF induces osteoclastogenesis in mouse spleen cell cultures independent of T cells or of RANK ligand. J Bone Miner Res 15 (Suppl 1):S389

    Google Scholar 

  • Chambers TJ, McSheehy PM, Thomson BM, Fuller K (1985) The effect of calcium-regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology 116:234–239

    Article  PubMed  CAS  Google Scholar 

  • Fox SW, Lovibond AC (2005) Current insights into the role of transforming growth factor-beta in bone resorption. Mol Cell Endocrinol 243:19–26

    Article  PubMed  CAS  Google Scholar 

  • Fujita D, Yamashita N, Iita S, Amano H, Yamada S, Sakamoto K (2003) Prostaglandin E2 induced the differentiation of osteoclasts in mouse osteoblast-depleted bone marrow cells. Prostaglandins Leukot Essent Fatty Acids 68:351–358

    Article  PubMed  CAS  Google Scholar 

  • Fuller K, Chambers TJ (1989) Effect of arachidonic acid metabolites on bone resorption by isolated rat osteoclasts. J Bone Miner Res 4:209–215

    Article  PubMed  CAS  Google Scholar 

  • Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ (2000) A role for TGFbeta(1) in osteoclast differentiation and survival. J Cell Sci 113:2445–2453

    PubMed  CAS  Google Scholar 

  • Fuller K, Kirstein B, Chambers TJ (2006) Murine osteoclast formation and function: differential regulation by humoral agents. Endocrinology 147:1979–1985

    Article  PubMed  CAS  Google Scholar 

  • Gardner CR (2007) Morphological analysis of osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures. Cell Biol Int 31:672–682

    Article  PubMed  CAS  Google Scholar 

  • Gardner CR, Blanqué R, Cottereaux C (2001) Mechanisms involved in prostaglandin-induced increase in bone resorption in neonatal mouse calvaria. Prostaglandins Leukot Essent Fatty Acids 64:117–125

    Article  PubMed  CAS  Google Scholar 

  • Gardner CR, Soria J, Gardner M (2007) Morphological studies of osteoclast apoptosis and the effects of endogenous mediators. In: Cho DW (ed) Focus on cell aoptosis research. Nova, Carondale, Ill. (in press; ISBN 1-60021-433-9)

  • Holloway WR, Collier FM, Herbst RE, Hodge JM, Nicholson GC (1997) Complex shape changes in isolated rat osteoclasts: involvement of protein kinase C in the response to calcitonin. Calcif Tissue Int 61:306–312

    Article  PubMed  CAS  Google Scholar 

  • Itonaga I, Sabokbar A, Sun SG, Kudo O, Danks L, Ferguson D, Fujikawa Y, Athanasou NA (2004) Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone 34:57–64

    Article  PubMed  CAS  Google Scholar 

  • Janssens K, Dijke P ten, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774

    Article  PubMed  CAS  Google Scholar 

  • Jurdic P, Saltel F, Chabadel A, Destaing O (2006) Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 85:195–202

    Article  PubMed  CAS  Google Scholar 

  • Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, Delaissé JM, Foged NT (2003) Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem 278:44975–44987

    Article  PubMed  CAS  Google Scholar 

  • Karst M, Gorny G, Galvin RJ, Oursler MJ (2004) Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation. J Cell Physiol 200:99–106

    Article  PubMed  CAS  Google Scholar 

  • Kim N, Kadono Y, Takami M, Lee J, Okada F, Kim JH, Kobayashi T, Odgren PR, Nakano H, Yeh WC, Lee SK, Lorenzo JA, Choi Y (2005) Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 202:589–595

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Mizoguchi T, Take I, Kurihara S, Udagawa N, Takahashi N (2005) Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1. J Biol Chem 280:11395–11403

    Article  PubMed  CAS  Google Scholar 

  • Lari R, Fleetwood AJ, Kitchener PD, Cook AD, Pavasovic D, Hertzog PJ, Hamilton JA (2007) Macrophage lineage phenotypes and osteoclastogenesis—complexity in the control by GM-CSF and TGF-beta. Bone 40:323–336

    Article  PubMed  CAS  Google Scholar 

  • Lean JM, Matsuo K, Fox SW, Fuller K, Gibson FM, Draycott G, Wani MR, Bayley KE, Wong BR, Choi Y, Wagner EF, Chambers TJ (2000) Osteoclast lineage commitment of bone marrow precursors through expression of membrane-bound TRANCE. Bone 27:29–40

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T, Ohneda O, Arai F, Iwamoto K, Okada S, Takagi K, Anderson DM, Suda T (2001) Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98:2544–2554

    Article  PubMed  CAS  Google Scholar 

  • Narayana Murthy PS, Sengupta S, Sharma S, Singh MM (2006) Effect of ormeloxifene on ovariectomy-induced bone resorption, osteoclast differentiation and apoptosis and TGF beta-3 expression. J Steroid Biochem Mol Biol 100:117–128

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Kaneko H, Choudhary S, Pilbeam CC, Lorenzo JA, Akatsu T, Kugai N, Raisz LG (2005) Biphasic effect of prostaglandin E2 on osteoclast formation in spleen cell cultures: role of the EP2 receptor. J Bone Miner Res 20:23–29

    Article  PubMed  CAS  Google Scholar 

  • Perez-Amodio S, Beertsen W, Everts V (2004) (Pre-)osteoclasts induce retraction of osteoblasts before their fusion to osteoclasts. J Bone Miner Res 19:1722–1731

    Article  PubMed  CAS  Google Scholar 

  • Reddy SV (2004) Regulatory mechanisms operative in osteoclasts. Crit Rev Eukaryot Gene Expr 14:255–270

    Article  PubMed  CAS  Google Scholar 

  • Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C, Jurdic P, Servet-Delprat C (2004) Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104:4029–4037

    Article  PubMed  CAS  Google Scholar 

  • Robinson JA, Riggs BL, Spelsberg TC, Oursler MJ (1996) Osteoclasts and transforming growth factor-beta: estrogen-mediated isoform-specific regulation of production. Endocrinology 137:615–621

    Article  PubMed  CAS  Google Scholar 

  • Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 83:170–179

    Article  PubMed  CAS  Google Scholar 

  • Takita M, Inada M, Maruyama T, Miyaura C (2007) Prostaglandin E receptor EP4 antagonist suppresses osteolysis due to bone metastasis of mouse melanoma cells. FEBS Lett 581:565–571

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Nakamura K, Takahasi N, Suda T (2005) Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 208:30–49

    Article  PubMed  CAS  Google Scholar 

  • Tintut Y, Parhami F, Tsingotjidou A, Tetradis S, Territo M, Demer LL (2002) 8-Isoprostaglandin E2 enhances receptor-activated NFkappa B ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. J Biol Chem 277:14221–14226

    Article  PubMed  CAS  Google Scholar 

  • Wani MR, Fuller K, Kim NS, Choi Y, Chambers T (1999) Prostaglandin E2 cooperates with TRANCE in osteoclast induction from hemopoietic precursors: synergistic activation of differentiation, cell spreading, and fusion. Endocrinology 140:1927–1935

    Article  PubMed  CAS  Google Scholar 

  • Wildemann B, Kadow-Romacker A, Labberstedt M, Rashke M, Haas NP, Schmidmaier G (2005) Differences in the fusion and resorption activity of human osteoclasts after stimulation with different growth factors released from a polylactide carrier. Calcif Tissue Int 76:50–55

    Article  PubMed  CAS  Google Scholar 

  • Yang NN, Bryant HU, Hardikar S, Sato M, Galvin RJ, Glasebrook AL, Termine JD (1996) Estrogen and raloxifene stimulate transforming growth factor-beta 3 gene expression in rat bone: a potential mechanism for estrogen- or raloxifene-mediated bone maintenance. Endocrinology 137:2075–2084

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

My thanks to Jeannette Soria for the use of the image analysis system at Hôtel Dieux Hospital, Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin R. Gardner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, C.R. Comparison of morphological effects of PGE2 and TGFβ on osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures. Cell Tissue Res 330, 111–121 (2007). https://doi.org/10.1007/s00441-007-0450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0450-2

Keywords

Navigation