Skip to main content
Log in

Hepatic morphological alterations, glycogen content and cytochrome P450 activities in rats treated chronically with Nω-nitro-L-arginine methyl ester (L-NAME)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Chronic treatment of rats with Nω-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension mediated partly by enhanced angiotensin-I-converting enzyme (ACE) activity. We examined the influence of L-NAME on rat liver morphology, on hepatic glycogen, cholesterol, and triglyceride content, and on the activities of the cytochrome P450 isoforms CYP1A1/2, CYP2B1/2, CYP2C11, and CYP2E1. Male Wistar rats were treated with L-NAME (20 mg/rat per day via drinking water) for 2, 4, and 8 weeks, and their livers were then removed for analysis. Enzymatic induction was produced by treating rats with phenobarbital (to induce CYP2B1/2), β-naphthoflavone (to induce CYP1A1/2), or pyrazole (to induce CYP2E1). L-NAME significantly elevated blood pressure; this was reversed by concomitant treatment with enalapril (ACE inhibitor) or losartan (angiotensin II AT1 receptor antagonist). L-NAME caused vascular hypertrophy in hepatic arteries, with perivascular and interstitial fibrosis involving collagen deposition. Hepatic glycogen content also significantly increased. L-NAME did not affect fasting glucose levels but significantly reduced insulin levels and increased the insulin sensitivity of rats, based on an intraperitoneal glucose tolerance test. Immunoblotting experiments indicated enhanced phosphorylation of protein kinase B and of glycogen synthase kinase 3. All these changes were reversed by concomitant treatment with enalapril or losartan. L-NAME had no effect on hepatic cholesterol or triglyceride content or on the basal or drug-induced activities and protein expression of the cytochrome P450 isoforms. Thus, the chronic inhibition of NO biosynthesis produced hepatic morphological alterations and changes in glycogen metabolism mediated by the renin-angiotensin system. The increase in hepatic glycogen content probably resulted from enhanced glycogen synthase activity following the inhibition of glycogen synthase kinase 3 by phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aitken AE, Richardson TA, Morgan ET (2005) Regulation of drug metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 46:123–149

    Article  CAS  Google Scholar 

  • Alexander B (1998) The role of nitric oxide in hepatic metabolism. Nutrition 14:376–390

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt R (1996) Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev Physiol Biochem Pharmacol 127:137–221

    PubMed  CAS  Google Scholar 

  • Borgs M, Bollen M, Keppens S, Yap SH, Stalmans W, Vanstapel F (1996) Modulation of basal hepatic glycogenolysis by nitric oxide. Hepatology 23:1564–1571

    Article  PubMed  CAS  Google Scholar 

  • Borzychowski AM, Chantakru S, Minhas K, Paffaro VA, Yamada AT, He H, Korach KS, Croy BA (2003) Functional analysis of murine uterine natural killer cells genetically devoid of oestrogen receptors. Placenta 24:403–411

    Article  PubMed  CAS  Google Scholar 

  • Brass EP, Vetter WH (1993) Inhibition of glucagon-stimulated glycogenolysis by S-nitroso-N-acetylpenicillamine. Pharmacol Toxicol 72:369–372

    PubMed  CAS  Google Scholar 

  • Burke MD, Mayer RT (1983) Differential effects of phenobarbitone and 3-methylcholanthrene induction on the hepatic microsomal metabolism and cytochrome P540 binding of phenoxazone and a homologous series of its n-alkyl esters (alkoxyresorufins). Chem Biol Interact 45:243–258

    Article  PubMed  CAS  Google Scholar 

  • Burke MD, Thompson S, Elcombe CR, Halpert J, Haaparanta T, Mayer RT (1985) Ethoxy-, pentoxy- and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450. Biochem Pharmacol 34:3337–3345

    Article  PubMed  CAS  Google Scholar 

  • Carlson TJ, Billings RE (1996) Role of nitric oxide in the cytokine-mediated regulation of cytochrome P-450. Mol Pharmacol 49:796–801

    PubMed  CAS  Google Scholar 

  • Casada M, Díaz-Guerra MJ, Bosca L, Martin-Sanz P (1996) Characterization of nitric oxide dependent changes in carbohydrate hepatic metabolism during septic shock. Life Sci 58:561–572

    Article  PubMed  CAS  Google Scholar 

  • Chrysselis MC, Rekka EA, Siskou IC, Kourounakis PN (2002) Nitric oxide releasing morpholine derivatives as hypolipidemic and antioxidant agents. J Med Chem 45:5406–5409

    Article  PubMed  CAS  Google Scholar 

  • Clejan LA, Cederbaum AI (1992) Role of cytochrome P450 in the oxidation of glycerol by reconstituted systems and microsomes. FASEB J 6:765–770

    PubMed  CAS  Google Scholar 

  • Clemens MG (1999) Nitric oxide in liver injury. Hepatology 30:1–5

    Article  PubMed  CAS  Google Scholar 

  • Donato MT, Guillén MI, Jover R, Castel JV, Gómez-Lechón MJ (1997) Nitric oxide-mediated inhibition of cytochrome P450 by interferon-γ in human hepatocytes. J Pharmacol Exp Ther 281:484–490

    PubMed  CAS  Google Scholar 

  • Donato MT, Ponsoda X, O’Connor E, Casteli JV, Gómez-Lechón J (2001) Role of endogenous nitric oxide in liver-specific functions and survival of cultured rat hepatocytes. Xenobiotica 31:249–264

    Article  PubMed  CAS  Google Scholar 

  • Dupuis M, Soubrier F, Brocheriou I, Raoux S, Haloui M, Louedec L, Michel JB, Nadaud S (2004) Profiling of aortic smooth muscle cell gene expression in response to chronic inhibition of nitric oxide synthase in rats. Circulation 110:867–873

    Article  PubMed  CAS  Google Scholar 

  • Ebel RE, O’Keefe DH, Peterson JA (1975) Nitric oxide complexes of cytochrome P450. FEBS Lett 55:198–201

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Garcia-Villafranca J, Guillen A, Castro J (2003) Involvement of nitric oxide/cyclic GMP signaling pathway in the regulation of fatty acid metabolism in rat hepatocytes. Biochem Pharmacol 65:807–812

    Article  PubMed  CAS  Google Scholar 

  • Gergel D, Misík V, Riesz P, Cederbaum AI (1997) Inhibition of rat and human cytochrome P450 2E1 catalytic activity and reactive oxygen radical formation by nitric oxide. Arch Biochem Biophys 337:239–250

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez W, Fontaine V, Pueyo ME, Laquay N, Messika-Zeitoun D, Philippe M, Arnal J-F, Jacob MP, Michel JB (2000) Molecular plasticity of vascular wall during NG-nitro-L-arginine methyl ester-induced hypertension—modulation of proinflammatory signals. Hypertension 36:103–109

    PubMed  CAS  Google Scholar 

  • Gurusamy N, Watanabe K, Ma M, Prakash P, Hirabayashi K, Zhang S, Muslin AJ, Kodama M, Aizawa Y (2006) Glycogen synthase kinase 3β together with 14-3-3 protein regulates diabetic cardiomyopathy: effect of losartan and tempol. FEBS Lett 580:1932–1940

    Article  PubMed  CAS  Google Scholar 

  • Haugen DA, Coon MJ (1976) Properties of electrophoretically homogenous phenobarbital-inducible forms of liver microsomal cytochrome P-450. J Biol Chem 251:7929–7939

    PubMed  CAS  Google Scholar 

  • Henriksen EJ, Jacob S (2003) Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition. J Cell Physiol 196:171–179

    Article  PubMed  CAS  Google Scholar 

  • Hodgson PD, Renton KW (1995) The role of nitric oxide generation in interferon-evoked cytochrome P450 down-regulation. Int J Immunopharmacol 17:995–1000

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi M, Mogi M, Iwai M (2006) Signaling crosstalk angiotensin II receptor subtypes and insulin. Endocrine J 53:1–5

    Article  CAS  Google Scholar 

  • Hropot M, Grötsch H, Klaus E, Langer KH, Linz W, Wiemer G, Scholkens BA (1994) Ramipril prevents the detrimental sequels of chronic NO synthase inhibition in rats: hypertension, cardiac hypertrophy and renal insufficiency. Naunyn-Schmiedeberg’s Arch Pharmacol 350:646–652

    Article  CAS  Google Scholar 

  • Hropot M, Langer KH, Wiemer G, Grötsch H, Linz W (2003) Angiotensin II subtype AT1 receptor blockade prevents hypertension and renal insufficiency induced by chronic NO-synthase inhibition in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 367:312–317

    Article  CAS  Google Scholar 

  • Hsieh NK, Wang JY, Liu JC, Lee WH, Chen HI (2004) Structural changes in cerebral arteries following nitric oxide deprivation: a comparison between normotensive and hypertensive rats. Thromb Haemost 92:162–170

    PubMed  CAS  Google Scholar 

  • Jones BE, Czaja MJ (1998) Mechanisms of hepatic toxicity. III. Intracellular signaling in response to toxic liver injury. Am J Physiol 275:G874–G878

    PubMed  CAS  Google Scholar 

  • Jover B, Mimran A (2001) Nitric oxide inhibition and renal alterations. J Cardiovasc Pharmacol 38 (Suppl 2):S65–S70

    PubMed  CAS  Google Scholar 

  • Kaplowitz N (2000) Mechanisms of liver cell injury. J Hepatol 32 (Suppl 1):39–47

    Article  PubMed  CAS  Google Scholar 

  • Kataoka C, Egashira K, Inoue S, Takemoto M, Ni W, Koyanagi M, Kitamoto S, Usui M, Kaibuchi K, Shimokawa H, Takeshita A (2002) Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 39:245–250

    Article  PubMed  CAS  Google Scholar 

  • Katoh M, Egashira K, Usui M, Ichiki T, Tomita H, Shimokawa H, Rakugi H, Takeshita A (1998) Cardiac angiotensin II receptors are upregulated by long-term inhibition of nitric oxide synthesis in rats. Circ Res 83:743–751

    PubMed  CAS  Google Scholar 

  • Khatsenko O, Kikkawa Y (1997) Nitric oxide differentially affects constitutive cytochrome P450 isoforms in rat liver. J Pharmacol Exp Ther 280:1463–1470

    PubMed  CAS  Google Scholar 

  • Khedara A, Kawai Y, Kayashita J, Kato N (1996) Feeding rats the nitric oxide synthase inhibitor, L-N(omega)nitroarginine, elevates serum triglyceride and cholesterol and lowers hepatic fatty acid oxidation. J Nutr 126:2563–2567

    PubMed  CAS  Google Scholar 

  • Khedara A, Goto T, Morishima M, Kayashita J, Kato N (1999) Elevated body fat in rats by the dietary nitric oxide synthase inhibitor, L-N omega nitroarginine. Biosci Biotechnol Biochem 63:698–702

    Article  PubMed  CAS  Google Scholar 

  • Kitano T, Okumura T, Nishizawa M, Liew SY, Seki T, Inoue K, Ito S (2002) Altered response to inflammatory cytokines in hepatic energy metabolism in inducible nitric oxide synthase knockout mice. J Hepatol 36:759–765

    Article  PubMed  CAS  Google Scholar 

  • Koop DR (1986) Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P-450 isozyme 3a. Mol Pharmacol 29:399–404

    PubMed  CAS  Google Scholar 

  • Kurowska EM, Carroll KK (1998) Hypercholesterolemic properties of nitric oxide. In vivo and in vitro studies using nitric oxide donors. Biochim Biophys Acta 1392:41–50

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 222:680–685

    Article  Google Scholar 

  • Li-Masters T, Morgan ET (2002) Down-regulation of phenobarbital-induce cytochrome P4502B mRNAs and proteins by endotoxin in mice independent from nitric oxide production by inducible nitric oxide synthase. Biochem Pharmacol 64:1703–1711

    Article  PubMed  CAS  Google Scholar 

  • Lo S, Russel JC, Taylor AW (1970) Determination of glycogen in small tissue samples. J Appl Physiol 28:234–236

    PubMed  CAS  Google Scholar 

  • López-García MP (1998) Endogenous nitric oxide is responsible for the early loss of P450 in cultured rat hepatocytes. FEBS Lett 438:145–149

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Machado LJ, Mihessen-Neto I, Marubayashi U, Reis AM, Coimbra CC (1995) Hyperglycemic action of angiotensin II in freely moving rats. Peptides 16:479–483

    Article  PubMed  CAS  Google Scholar 

  • Martens FMAC, Demeilliers B, Girardot D, Daigle C, Dao HH, deBlois D, Moreau P (2002) Vessel-specific stimulation of protein synthesis by nitric oxide synthase inhibition. Role of extracellular signal-regulated kinases 1/2. Hypertension 39:16–21

    Article  PubMed  CAS  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment, insulin resistance and beta-cell function from lasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–418

    Article  PubMed  CAS  Google Scholar 

  • Minamino T, Kitakaze M, Papst PJ, Ueda Y, Sakata Y, Asanuma H, Ogai A, Kuzuya T, Terada N, Hori M (2000) Inhibition of nitric oxide synthesis induced coronary vascular remodeling and cardiac hypertrophy associated with the activation of p70 S6 kinase in rats. Cardiovasc Drugs Ther 14:533–542

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:100–142

    Google Scholar 

  • Monshouwer M, Witkamp RF, Nijmeijer SM, Van Amsterdam JG, Van Miert ASJPAM (1996) Suppression of cytochrome P450- and UDP glucuronosyl transferase-dependent enzyme activities by proinflammatory cytokines and possible role of nitric oxide in primary cultures of pig hepatocytes. Toxicol Appl Pharmacol 137:237–244

    Article  PubMed  CAS  Google Scholar 

  • Moreno H Jr, Metze K, Bento AC, Antunes E, Zatz R, Nucci G de (1996) Chronic nitric oxide inhibition as a model of hypertensive heart muscle disease. Basic Res Cardiol 91:248–255

    Article  PubMed  Google Scholar 

  • Moreno H Jr, Nathan LP, Metze K, Costa SKP, Antunes E, Hyslop S, Zatz R, Nucci G de (1997) Non-specific inhibitors of nitric oxide synthase cause myocardial necrosis in the rat. Clin Exp Pharmacol Physiol 24:349–352

    CAS  Google Scholar 

  • Müller CM, Scierka A, Stiller RL, Kim Y-M, Cook DR, Lancaster JR Jr, Buffington CW, Watkins WD (1996) Nitric oxide mediates hepatic cytochrome P450 dysfunction induced by endotoxin. Anesthesiology 84:1435–1442

    Article  PubMed  Google Scholar 

  • Muriel P (2000) Regulation of nitric oxide synthesis in the liver. J Appl Toxicol 20:89–195

    Article  Google Scholar 

  • Neau E, Dansette PM, Andronik V, Mansuy D (1990) Hydroxylation of the thiophene ring by hepatic monooxygenases. Evidence for 5-hydroxylation of 2-aroylthiophenes as a general metabolic pathway using a simple UV-visible assay. Biochem Pharmacol 39:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Katagiri H, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Komuro I, Fujita T (2002) Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 40:872–879

    Article  PubMed  CAS  Google Scholar 

  • Okruhlicová L, Tribulová N, Bernátová I, Pechánová O (2000) Induction of angiogenesis in NO-deficient rat heart. Physiol Res 49:71–76

    PubMed  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. 1. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    PubMed  CAS  Google Scholar 

  • Pfeilschifter J, Eberhardt W, Beck KF (2001) Regulation of gene expression by nitric oxide. Pflügers Arch Eur J Physiol 442:479–486

    Article  CAS  Google Scholar 

  • Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93:1034–1046

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro M, Antunes E, Nucci G de, Lovisolo SM, Zatz R (1992) Chronic inhibition of nitric oxide synthesis: a new model of arterial hypertension. Hypertension 20:298–303

    PubMed  CAS  Google Scholar 

  • Ribeiro EA Jr, Cunha FQ, Tamashiro WM, Martins IS (1999) Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett 445:283–286

    Article  PubMed  CAS  Google Scholar 

  • Rockey DC (2001) Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis 21:337–349

    Article  PubMed  CAS  Google Scholar 

  • Saad MJ, Araki E, Miralpeix M, Rothenberg PI, White MF, Kahn CR (1992) Regulation of insulin receptor substrate 1 in liver and muscle of animal models of insulin resistance. J Clin Invest 90:1839–1849

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  PubMed  CAS  Google Scholar 

  • Sanada S, Kitakaze M, Node K, Takashima S, Ogai A, Asanuma H, Sakata Y, Asakura M, Ogita H, Liao Y, Fukushima T, Yamada J, Minamino T, Kuzuya T, Hori M (2001) Differential subcellular actions of ACE inhibitors and AT1 receptor antagonists on cardiac remodeling induced by chronic inhibition of NO synthesis in rats. Hypertension 38:404–411

    PubMed  CAS  Google Scholar 

  • Scott AM, Atwater I, Rojas E (1981) A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of Langerhans. Diabetologia 21:470–475

    Article  PubMed  CAS  Google Scholar 

  • Sewer MB, Morgan ET (1997) Nitric oxide-independent suppression of P-450 2C 11 expression by interleukin-1β and endotoxin in primary rat hepatocytes. Biochem Pharmacol 54:729–737

    Article  PubMed  CAS  Google Scholar 

  • Sewer MB, Morgan ET (1998) Down-regulation of the expression of three major rat liver cytochrome P450s by endotoxin in vivo occurs independently of nitric oxide production. J Pharmacol Exp Ther 287:352–358

    PubMed  CAS  Google Scholar 

  • Sewer MB, Barclay TB, Morgan ET (1998) Down-regulation of cytochrome P450 mRNAs and proteins in mice lacking a functional NOS2 gene. Mol Pharmacol 54:273–279

    PubMed  CAS  Google Scholar 

  • Sprangers F, Sauerwein HP, Romijn JA, Woerkom GM van, Meijer AJ (1998) Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes. Biochem J 330:1045–1049

    PubMed  CAS  Google Scholar 

  • Stadler J, Trockfeld J, Schmalix WA, Brill T, Siewert JR, Greim H, Doehmer J (1994) Inhibition of cytochrome P4501A by nitric oxide. Proc Natl Acad Sci USA 91:3559–3563

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Fujita S, Narimatsu S, Masubuchi Y, Tachibana M, Ohata S, Hirobe M (1992) Cytochrome P450 isozymes catalyzing 4-hydroxylation of Parkinsonism-related compound 1,2,3,4-tetrahydroisoquinoline in rat liver microsomes. FASEB J 6:771–776

    PubMed  CAS  Google Scholar 

  • Takemoto M, Egashira K, Tomita H, Usui M, Okamoto H, Kitabatake A, Shimokawa H, Sueishi K, Takeshita A (1997a) Chronic angiotensin-converting enzyme inhibition and angiotensin II type-1 receptor blockade: effects on cardiovascular remodeling in rats induced by the long-term blockade of nitric oxide synthesis. Hypertension 30:1621–1627

    PubMed  CAS  Google Scholar 

  • Takemoto M, Egashira K, Usui M, Numaguchi K, Tomita H, Tsutsui H, Shimokawa H, Sueishi K, Takeshita A (1997b) Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats. J Clin Invest 99:278–287

    Article  PubMed  CAS  Google Scholar 

  • Takemura S, Minamiyama Y, Imaoka S, Funae Y, Hirohashi K, Inoue M, Kinoshita H (1999) Hepatic cytochrome P-450 is directly inactivated by nitric oxide, not by inflammatory cytokines, in the early phase of endotoxemia. J Hepatol 30:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Invest 22:158–161

    CAS  Google Scholar 

  • Velloso LA, Folli F, Perego L, Saad MJA (2006) The multi-faceted cross-talk between the insulin and angiotensin II signaling systems. Diabetes Metab Res Rev 22:98–107

    Article  PubMed  CAS  Google Scholar 

  • Wiest R, Groszmann RJ (1999) Nitric oxide and portal hypertension: its role in the regulation of intrahepatic and splanchnic vascular resistance. Semin Liver Dis 19:411–426

    Article  PubMed  CAS  Google Scholar 

  • Young HM, O’Brien AJ, Furness JB, Ciampoli D, Hardwick JP, McCabe TJ, Narayanasami R, Masters BSS, Tracey WR (1997) Relationships between NADPH diaphorase staining and neuronal, endothelial and inducible nitric oxide synthase and cytochrome P450 reductase immunoreactivities in guinea-pig tissues. Histochem Cell Biol 107:19–29

    Article  PubMed  CAS  Google Scholar 

  • Zatz R, Baylis C (1998) Chronic nitric oxide inhibition model six years on. Hypertension 32:958–964

    PubMed  CAS  Google Scholar 

  • Zheng JF, Wang HD, Liang LJ (2002) Protective effects of nitric oxide on hepatic steatosis induced by total parenteral nutrition in rats. Acta Pharmacol Sin 23:824–828

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank José Ilton dos Santos for technical assistance, Dr. Luzia Modolo (Department of Biochemistry, Institute of Biology, UNICAMP) for help with NOS activity assays, Dr. Patrick M. Dansete (Laboratoire de Chemie et de Biochime Pharmacologiques et Toxicologiques, Paris, France) for providing the tienilic acid, Dr. Aureo T. Yamada (Department of Histology and Embryology, Institute of Biology, UNICAMP) for use of the microscope and image analysis system, and Dr. José E. Belizário (Department of Pharmacology, Institute of Biochemical Sciences, University of São Paulo, São Paulo, Brazil) for use of the fluorometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Hyslop.

Additional information

C.A.B.T. was supported by a doctoral studentship from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant no. 00/02083-0). I.S., M.A.C.H., M.J.A.S., and S.H. are supported by research fellowships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarsitano, C.A.B., Paffaro, V.A., Pauli, J.R. et al. Hepatic morphological alterations, glycogen content and cytochrome P450 activities in rats treated chronically with Nω-nitro-L-arginine methyl ester (L-NAME). Cell Tissue Res 329, 45–58 (2007). https://doi.org/10.1007/s00441-007-0411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0411-9

Keywords

Navigation