Skip to main content
Log in

Catalase, Bax and p53 expression in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In invertebrates, a few studies have suggested apoptosis as the mechanism of choice to protect the retina after exposure to ultraviolet (UV) radiation. We demonstrated previously, by electron microscopy, that the retina and lamina ganglionaris (or lamina) cells of the crab Ucides cordatus displayed subcellular signs of apoptosis after exposure to UVB and UVC. Here, we first ascertained, by the TdT-mediated dUTP-biotin nick end-labeling (TUNEL) technique, that UV irradiation indeed produced the previously reported results. We next tested, in the visual system of U. cordatus, whether the expression (as analyzed by immunohistochemistry and observed with laser scanning microscopy) and levels (as examined by Western blotting) of catalase, Bax, and p53 were affected by the same dose of UV radiation as that used previously. Our data revealed that the intensity of catalase, Bax, and p53 labeling was stronger in irradiated retina and lamina cells than in non-irradiated retina and lamina. However, no significant difference was observed in the concentrations of these proteins isolated from the whole optic lobe. The results thus suggest that UVB and UVC induce apoptosis in the crustacean retina and lamina by increasing catalase expression and activating the Bax- and p53-mediated apoptosis pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allodi S, Santos LMS, da Silva SF (1995) Histological study of the visual system in the decapod crustacean Macrobrachium rosenbergii. Braz J Morphol Sci 12:14–22

    Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  • Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101:103–113

    Article  PubMed  CAS  Google Scholar 

  • Cajaraville MP, Völkl A, Fahimi HD (1992) Peroxisomes in the digestive gland cells of the mussel Mytilus galloprovincialis Lmk. Biochemical, ultrastructural and immunocytochemical characterization. Eur J Cell Biol 59:255–264

    PubMed  CAS  Google Scholar 

  • Cajaraville MP, Cancio I, Ibabe A, Orbea A (2003) Peroxisome proliferation as a biomarker in environmental pollution assessment. Microsc Res Tech 61:191–202

    Article  PubMed  CAS  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679

    Article  PubMed  CAS  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309:1732–1735

    Article  PubMed  CAS  Google Scholar 

  • Chouinard N, Valerie K, Rouabhia M, Huot J (2002) UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. Biochem J 365:133–145

    Article  PubMed  CAS  Google Scholar 

  • Corrêa CL, Silva SF da, Lowe J, Tortelote GG, Einicker-Lamas M, Martinez AMB, Allodi A (2004) Identification of a neurofilament-like protein in the protocerebral tract of the crab Ucides cordatus. Cell Tissue Res 318:609–615

    Article  PubMed  CAS  Google Scholar 

  • da Silva SF, Corrêa CL, Tortelote GG, Einicker-Lamas M, Martinez AMB, Allodi S (2004) Glial fibrillary acidic protein (GFAP)-like immunoreactivity in the visual system of the crab Ucides cordatus (Crustacea, Decapoda). Biol Cell 96:727–734

    Article  CAS  Google Scholar 

  • Duncan DD, Munoz B, Bandeen-Roche K, West SK (1997) Assessment of ocular exposure to ultraviolet-B for population studies. Salisbury eye evaluation project team. Photochem Photobiol 66:701–709

    Article  PubMed  CAS  Google Scholar 

  • Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  • Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984) Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312:646–649

    Article  PubMed  CAS  Google Scholar 

  • Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Garcia MX, Foote C, van Es S, Devreotes PN, Alexander S, Alexander H (2000) Differential developmental expression and cell type specificity of Dictyostelium catalases and their response to oxidative stress and UV-light. Biochim Biophys Acta 1492:295–310

    PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  • Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983

    PubMed  CAS  Google Scholar 

  • Grassé PP, Poisson RA, Tuzet O (1976) Zoología. 1. Invertebrados. Toray-Masson, Barcelona

    Google Scholar 

  • Green DR (2005) Apoptotic pathways: ten minutes to dead. Cell 121:671–674

    Article  PubMed  CAS  Google Scholar 

  • Gouveia GR, Marques DS, Cruz BP, Geracitano LA, Nery LE, Trindade GS (2005) Antioxidant defenses and DNA damage induced by UV-A and UV-B radiation in the crab Chasmagnathus granulata (Decapoda, Brachyura). Photochem Photobiol 81:398–403

    Article  PubMed  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    PubMed  CAS  Google Scholar 

  • Guimarães CA, Linden R (2004) Programmed cell death. Apoptosis and alternative deathstyles. Eur J Biochem 271:1638–1650

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • He Q, Huang Y, Sheikh MS, Murphy M, Mabruk MJ, Lenane P, Liew A, McCann P, Buckley A, Billet P, Leader M, Kay E, Murphy GM (2004) Bax deficiency affects caspase-2 activation during ultraviolet radiation-induced apoptosis. Oncogene 23:1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Jassim OW, Fink JL, Cagan RL (2003) Dmp53 protects the Drosophila retina during a developmentally regulated DNA damage response. EMBO J 22:5622–5632

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A, Yandell MD, Pavletich NP, Young MW, Levine AJ (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci USA 97:7301–7306

    Article  PubMed  CAS  Google Scholar 

  • Kahl R, Kampkotter A, Watjen W, Chovolou Y (2004) Antioxidant and apoptosis. Drug Metab Rev 36:747–762

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR, Harmon BV (1991) Definition and incidence of apoptosis: an historical perspective. In: Tornei LD, Cope FO (eds) The molecular basis of cell death. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 5–29

    Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Kerr JF, Harmon B, Searle J (1974) An electron-microscope study of cell deletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibers. J Cell Sci 14:571–585

    PubMed  CAS  Google Scholar 

  • Korsmeyer SJ (1992) Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80:879–886

    PubMed  CAS  Google Scholar 

  • Kulms D, Schwarz T (2002) Independent contribution of three different pathways to ultraviolet-B-induced apoptosis. Biochem Pharmacol 64:837–841

    Article  PubMed  CAS  Google Scholar 

  • Kulms D, Poppelmann B, Yarosh D, Luger TA, Krutman J, Schwarz T (1999) Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc Natl Acad Sci USA 96:7974–7979

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Shyue SK, Liu PL, Chen YH, Ku HH, Chen JW, Tam KB, Chen YL (2004) Adenovirus-mediated overexpression of catalase attenuates oxLDL-induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. J Mol Cell Cardiol 36:129–139

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lyn D, Liu X, Bennett NA, Emmett NL (2000) Gene expression profile in mouse myocardium after ischemia. Physiol Genomics 2:93–100

    PubMed  CAS  Google Scholar 

  • Miguel NCO, Meyer-Rochow VB, Allodi S (2002) Ultrastructural study of first and second order neurons in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation. Micron 33:627–637

    Article  Google Scholar 

  • Miguel NCO, Meyer-Rochow VB, Allodi S (2003) A structural study of the retinal photoreceptor, plexiform and ganglion cell layers following exposure to UV-B and UV-C radiation in the albino rat. Micron 34:395–404

    Article  Google Scholar 

  • Miguel NCO, Wajsenzon IJR, Allodi S (2005) The expression of catalase in the visual system of the crab Ucides cordatus. Nauplius 13:159–166

    Google Scholar 

  • Oberley TD, Oberley LW (1997) Antioxidant enzyme levels in cancer. Histol Histopathol 12:525–535

    PubMed  CAS  Google Scholar 

  • Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A, Duyk G, Friedman L, Prives C, Kopczynski C (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101:91–101

    Article  PubMed  CAS  Google Scholar 

  • Oltval ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  Google Scholar 

  • Orbea A, Ortiz-Zarragoitia M, Solé M, Porte C, Cajaraville MP (2002) Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve mollusks, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquat Toxicol 58:75–98

    Article  PubMed  CAS  Google Scholar 

  • Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984) Cooperation between gene encoding P53 tumour antigen and ras in cellular transformation. Nature 312:649–651

    Article  PubMed  CAS  Google Scholar 

  • Pipe RK, Livingstone DR (1993) Antioxidant enzymes associated with the blood cell and haemolymph of the mussel Mytilus galloprovincialis. Fish Shellfish Immunol 3:221–233

    Article  Google Scholar 

  • Reddy GB, Bhat KS (1999) Protection against UV-B inactivation (in vitro) of rat lens enzymes by natural antioxidants. Mol Cell Biochem 194:41–45

    Article  PubMed  CAS  Google Scholar 

  • Reddy VN, Kasahara E, Hiraoka M, Lin LR, Ho YS (2004) Effects of variation in superoxide dismutases (SOD) on oxidative stress and apoptosis in lens epithelium. Exp Eye Res 79:859–868

    Article  PubMed  CAS  Google Scholar 

  • Reich NC, Levine AJ (1984) Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature 308:199–201

    Article  PubMed  CAS  Google Scholar 

  • Roos W, Baumgartner M, Kaina B (2004) Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1. Oncogene 23:359–367

    Article  PubMed  CAS  Google Scholar 

  • Sanford BE, Beacham S, Hanifin JP, Hannon P, Streletz L, Sliney D, Brainard GC (1996) The effects of ultraviolet-A radiation on visual evoked potentials in the young human eye. Acta Ophthalmol Scand 74:553–557

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, King SJ, Stroh TA (2000) Real time imaging reveals a peroxisomal reticulum in living cells. J Cell Sci 113:3663–3671

    PubMed  CAS  Google Scholar 

  • She QB, Chen N, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275:20444–20449

    Article  PubMed  CAS  Google Scholar 

  • Sohn D, Essmann F, Schulze-Osthoff K, Janicke RU (2006) P21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation. Cancer Res 66:11254–11262

    Article  PubMed  CAS  Google Scholar 

  • Song JJ, Lee YJ (2003) Catalase, but not MnSOD, inhibits glucose deprivation-activated ASK1-MEK-MAPK signal transduction pathway and prevents relocalization of daxx: hydrogen peroxide as a major second messenger of metabolic oxidative stress. J Cell Biochem 90:304–314

    Article  PubMed  CAS  Google Scholar 

  • Tome ME, Baker AF, Powis G, Payne CM, Briehl MM (2001) Catalase-overexpressing thymocytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Res 61:2766–2773

    PubMed  CAS  Google Scholar 

  • Tomicic MT, Christmann M, Kaina B (2005) Apoptosis in UV-C light irradiated p53 wild-type, apaf-1 and p53 knockout mouse embryonic fibroblasts: interplay of receptor and mitochondrial pathway. Apoptosis 10:1295–1304

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH (2000) P53: death star. Cell 101:691–694

    Article  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell´s response to p53. Natl Rev Cancer 2:594–604

    Article  CAS  Google Scholar 

  • Wyllie AH (1985) The biology of cell death in tumours. Anticancer Res 5:131–136

    PubMed  CAS  Google Scholar 

  • Zhong LT, Sarafian T, Kane DJ, Charles AC, Mah SP, Edwards RH, Bredesen DEZ (1993) Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 90:4533–4537

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Jorge Luís da Silva for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Allodi.

Additional information

Nadia Campos de Oliveira Miguel and Inês Júlia R. Wajsenzon contributed equally to this work.

This study was supported by the Brazilian Research Council for Science and Technology (CNPq), Rio de Janeiro State Foundation for the Advancement of Science (FAPERJ), José Bonifácio Foundation (FUJB), and Federal University of Rio de Janeiro Research Chamber (SR2/UFRJ).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miguel, N.C., Wajsenzon, I.J.R., Takiya, C.M. et al. Catalase, Bax and p53 expression in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation. Cell Tissue Res 329, 159–168 (2007). https://doi.org/10.1007/s00441-007-0410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0410-x

Keywords

Navigation