Skip to main content

Advertisement

Log in

Expression of PU.1 and terminal differentiation of alveolar macrophages in newborn rats

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

PU.1, which is a transcription factor, promotes the terminal differentiation of alveolar macrophages (AMs). Its expression is regulated by granulocyte/macrophage colony-stimulating factor (GM-CSF). In this study of AMs in newborn rats, we performed immunohistochemical staining, acid phosphatase staining, reverse transcriptase polymerase chain reaction (RT-PCR), quantitative real-time PCR, cytokine assay, and electron microscopy. AMs at 3 and 7 days after birth had a large foamy appearance with an intracytoplasmic accumulation of surfactants. Weak expression of PU.1 was observed in the nuclei. AMs at 15 days after birth were smaller, and PU.1 expression had increased. Ultrastructurally, AMs at 1 day after birth had a smooth surface and abundant lamellar structures in the cytoplasm, whereas AMs at 56 days after birth were characterized by (1) abundant microvillar projections on the cell surface, and (2) well-developed lysosomes and a few lamellar structures in the cytoplasm. Acid phosphatase activity and the expression of mannose receptor, scavenger receptor, and GM-CSF receptor α were enhanced in AMs with time after birth. These results suggest that AMs are initially immature, and that their terminal differentiation starts after birth concomitantly with an increased expression of PU.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bellanti JA, Nerurkar LS, Zeligs BJ (1979) Host defenses in the fetus and neonate: studies of the alveolar macrophage during maturation. Pediatrics 64:726–739

    PubMed  CAS  Google Scholar 

  • Bonfield TL, Raychaudhuri B, Malur A, Abraham S, Trapnell BC, Kavuru MS, Thomassen MJ (2003) PU.1 regulation of human alveolar macrophage differentiation requires granulocyte-macrophage colony-stimulating factor. Am J Physiol Lung Cell Mol Physiol 285:L1132–L1136

    PubMed  CAS  Google Scholar 

  • Bry K, Hallman M, Teramo K, Waffarn F, Lappalainen U (1997) Granulocyte-macrophage colony-stimulating factor in amniotic fluid and in airway specimens of newborn infants. Pediatr Res 41:105–109

    Article  PubMed  CAS  Google Scholar 

  • Burgess AW, Metcalf D (1980) The nature and action of granulocyte-macrophage colony stimulating factors. Blood 56:947–958

    PubMed  CAS  Google Scholar 

  • Burgess AW, Kamakaris J, Metcalf D (1977) Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem 252:1998–2003

    PubMed  CAS  Google Scholar 

  • Chen H, Zhang P, Voso MT, Hohaus S, Gonzalez DA, Glass CK, Zhang DE, Tenen DG (1995) Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B. Blood 85:2918–2928

    PubMed  CAS  Google Scholar 

  • Churchill L, Friedman B, Schleimer RP, Proud D (1992) Production of granulocyte-macrophage colony-stimulating factor by cultured human tracheal epithelial cells. Immunology 75:189–195

    PubMed  CAS  Google Scholar 

  • Cromwell O, Hamid Q, Corrigan CJ, Barkans J, Meng Q, Collins PD, Kay AB (1992) Expression and generation of interleukin-8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1β and tumor necrosis factor-α. Immunology 77:330–337

    PubMed  CAS  Google Scholar 

  • Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT, Dickersin GR, Bachurski CJ, Mark EL, Whitsett JA, Mulligan RC (1994) Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264:713–716

    Article  PubMed  CAS  Google Scholar 

  • Fraser J, Walls M, McGuire W (2006) Respiratory complications of preterm birth. BMJ 329:962–965

    Article  Google Scholar 

  • Gasson JC (1991) Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77:1131–1145

    PubMed  CAS  Google Scholar 

  • Golde DW, Territo M, Finley TN, Cline MJ (1976) Defective lung macrophages in pulmonary alveolar proteinosis. Ann Intern Med 85:304–309

    PubMed  CAS  Google Scholar 

  • Hansen T, Corbet A (1998) Lung development and function In: Taeusch WH, Ballard RA (eds) Avery’s disease of the newborn, 7th edn. Saunders, Philadelphia, pp 541–551

    Google Scholar 

  • Huffman JA, Hull WM, Dranoff G, Mulligan RC, Whitsett JA (1996) Pulmonary epithelial cell expression of GM-CSF corrects the alveolar proteinosis in GM-CSF-deficient mice. J Clin Invest 97:649–655

    Article  PubMed  CAS  Google Scholar 

  • Huffman Reed JA, Rice WR, Zsengeller ZK, Wert SE, Dranoff G, Whitsett JA (1997) GM-CSF enhances lung growth and causes alveolar type II epithelial cell hyperplasia in transgenic mice. Am J Physiol Lung Cell Mol Physiol 273:L715–L725

    CAS  Google Scholar 

  • Jacobs H, Jobe A, Ikegami M, Jones S (1982) Surfactant phosphatidylcholine source, fluxes, and turnover times in 3-day-old, 10-day-old, and adult rabbits. J Biol Chem 257:1805–1810

    PubMed  CAS  Google Scholar 

  • Jobe AH, Ikegami M (1993) Surfactant metabolism. Clin Perinatol 20:683–696

    PubMed  CAS  Google Scholar 

  • Jobe A, Ikegami M, Jacobs H (1981) Changes in the amount of lung and airway phosphatidylcholine in 0.5-12.5-day-old rabbits. Biochimi Biophys Acta 664:182–187

    CAS  Google Scholar 

  • Kitamura T, Tanaka N, Watanabe J, Uchida K, Kanegasaki S, Yamada Y, Nakata K (1999) Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med 190:875–880

    Article  PubMed  CAS  Google Scholar 

  • Kurland G, Cheung AT, Miller ME, Ayin SA, Cho MM, Ford EW (1988) The ontogeny of pulmonary defenses: alveolar macrophage function in neonatal and juvenile rhesus monkeys. Pediatr Res 23:293–297

    Article  PubMed  CAS  Google Scholar 

  • Lee PT, Holt PG, McWilliam AS (2001a) Ontogeny of rat pulmonary alveolar macrophage function: evidence for a selective deficiency in IL-10 and nitric oxide production by newborn alveolar macrophages. Cytokine 15:53–57

    Article  PubMed  CAS  Google Scholar 

  • Lee PT, Holt PG, McWilliam AS (2001b) Failure of MHC class II expression in neonatal alveolar macrophages: potential role of class II transactivator. Eur J Immunol 31:2347–2356

    Article  PubMed  CAS  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15:5647–5658

    PubMed  CAS  Google Scholar 

  • Nakata K, Akagawa KS, Fukayama M, Hayashi Y, Kadokura M, Tokunaga T (1991) Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro. J Immunol 147:1266–1272

    PubMed  CAS  Google Scholar 

  • Nishinakamura R, Nakayama N, Hirabayashi Y, Inoue T, Aud D, McNeil T, Azuma S, Yoshida S, Toyoda Y, Arai K, Miyajima A, Murray R (1995) Mice deficient for the IL-3/GM-CSF/IL-5β receptor exhibit lung pathology and impaired immune response, while βIL3 receptor-deficient mice are normal. Immunity 2:211–222

    Article  PubMed  CAS  Google Scholar 

  • Ohashi T, Pinkerton K, Ikegami M, Jobe AH (1994) Changes in alveolar surface area, surfactant protein A, and saturated phosphatidylcholine with postnatal rat lung growth. Pediatr Res 35:685–689

    Article  PubMed  CAS  Google Scholar 

  • Papoff P, Christensen RD, Calhoun DA, Juul SE (2001) Granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor and neutrophils in the bronchoalveolar lavage fluid of premature infants with respiratory distress syndrome. Biol Neonate 80:133–141

    Article  PubMed  CAS  Google Scholar 

  • Presneill JJ, Nakata K, Inoue Y, Seymour JF (2004) Pulmonary alveolar proteinosis. Clin Chest Med 25:593–613

    Article  PubMed  Google Scholar 

  • Randell SH, Silbajoris R, Young SL (1991) Ontogeny of rat lung type II cells correlated with surfactant lipid and surfactant apoprotein expression. Am J Physiol Cell Mol Physiol 260:L562–L570

    CAS  Google Scholar 

  • Reed JA, Ikegami M, Cianciolo ER, Lu W, Cho PS, Hull W, Jobe AH, Whitsett JA (1999) Aerosolized GM-CSF ameliorates pulmonary alveolar proteinosis in GM-CSF-deficient mice. Am J Physiol Lung Cell Mol Physiol 276:L556–L563

    CAS  Google Scholar 

  • Robb L, Drinkwater CC, Metcalf D, Li R, Kontgen F, Nicola NA, Begley CG (1995) Hematopoietic and lung abnormalities in mice with a null mutation of the common β subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci USA 92:9565–9569

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ (2003) Management of respiratory distress syndrome: an update. Respir Care 48:279–286

    PubMed  Google Scholar 

  • Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC (2001) GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 15:557–567

    Article  PubMed  CAS  Google Scholar 

  • Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JAM, Maher DW, Cebon J, Sinickas V, Dunn AR (1994) Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA 91:5592–5596

    Article  PubMed  CAS  Google Scholar 

  • Suresh GK, Soll RF (2005) Overview of surfactant replacement trials. J Perinatol 25:S40–S44

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Watanabe J, Kitamura T, Yamada Y, Kanegasaki S, Nakata K (1999) Lungs of patients with idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte-macropharge colony stimulating factor. FEBS Lett 442:246–250

    Article  PubMed  CAS  Google Scholar 

  • Trapnell BC, Whitsett JA (2002) GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol 64:775–802

    Article  PubMed  CAS  Google Scholar 

  • Trapnell BC, Whitsett JA, Nakata K (2003) Pulmonary alveolar proteinosis. N Engl J Med 349:2527–2539

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Nakata K, Trapnell BC, Terakawa T, Hamano E, Mikami A, Matsushita I, Seymour JF, Oh-eda M, Ishige I, Eishi Y, Kitamura T, Yamada Y, Hanaoka K, Keicho N (2004) High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood 103:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Voso MT, Burn TC, Wulf G, Lim B, Leone G, Tenen DG (1994) Inhibition of hematopoiesis by competitive binding of transcription factor PU.1. Proc Natl Acad Sci USA 91:7932–7936

    Article  PubMed  CAS  Google Scholar 

  • Worgall S, Singh R, Leopold PL, Kaner RJ, Hackett NR, Topf N, Moore MAS, Crystal RG (1999) Selective expansion of alveolar macrophages in vivo by adenovirus-mediated transfer of the murine granulocyte-macrophage colony-stimulating factor cDNA. Blood 93:655–666

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Susumu Momozaki, Mr. Kenji Oyachi, Mr. Takashi Aoyama, (Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Science), and Ms. Yoko Aizawa (Bioscience and Medical Research Center, Niigata University Medical and Dental Hospital) for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Naito.

Additional information

This study was supported in part by grant no. H14-trans-014 from the Ministry of Health, Labor, and Welfare of Japan and grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwabuchi, H., Kawasaki, T., Yamamoto, T. et al. Expression of PU.1 and terminal differentiation of alveolar macrophages in newborn rats. Cell Tissue Res 329, 71–79 (2007). https://doi.org/10.1007/s00441-007-0405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0405-7

Keywords

Navigation