Skip to main content

Advertisement

Log in

Molecular characterization and cell-specific expression of an ion transport peptide in the tobacco hornworm, Manduca sexta

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The crustacean hyperglycemic hormone (CHH) peptides regulate diverse physiological processes from reproduction to metabolism and molting in arthropods. In insects, the ion transport peptides (ITP), also members of the CHH family, have only been implicated in ion transport. In this study, we sequenced a nucleotide fragment spanning the conserved A1/A2 region of the putative CHH/ITP gene. This fragment was amplified from larval cDNA of the tobacco hornworm, Manduca sexta and showed a high degree of sequence conservation with the same region from other insects and, to a lesser degree, with that of crustacean species, suggesting the presence of a Manduca-specific CHH/ITP mRNA (MasITP mRNA). CHH-like immunocytochemical analyses with two crustacean antisera (from Carcinus maenas and Cancer pagurus) identified the presence of CHH-like immunoreactivity in nervous tissue of all developmental stages, but not in the gut of M. sexta. Specifically, CHH-like peptides localized to paired type IA2 neurosecretory cells of the pars lateralis of the brain (projecting ipsilaterallly to the corpora cardiaca-allata complex) and to neurosecretory cells and transverse nerves of the ventral nerve cord in larvae, pupae, and adults. The distribution of the putative MasITP peptide shifted during development in a manner consistent with metamorphic reorganization. A comparison of hemolymph equivalents of CHH detected by enzyme-linked immunosorbent assay with CHH-like immunoreactivity in transverse nerves provided evidence for the release of MasITP from the transverse nerves into the hemolymph at insect ecdysis. These data suggest the presence of an insect ITP in M. sexta and a role for this hormone during ecdysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Audsley N, McIntosh C, Phillips JE (1992) Isolation of a neuropeptide from locust corpus cardiacum which influences ileal transport. J Exp Biol 173:261–274

    PubMed  CAS  Google Scholar 

  • Bell RA, Joachim FA (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink ballworms. Ann Entomol Soc Am 69:365–373

    Google Scholar 

  • Chan SM, Gu PL, Chu KH, Tobe SS (2003) Crustacean neuropeptide genes of the CHH/MIH/GIH family: implications from molecular studies. Gen Comp Endocrinol 134:214–219

    Article  PubMed  CAS  Google Scholar 

  • Chung JS, Webster SG (1996) Does the N-terminal pyroglutamate residue have any physiological significance for crab hyperglycemic neuropeptides? Eur J Biochem 240:358–364

    Article  PubMed  CAS  Google Scholar 

  • Chung JS, Wilkinson MC, Webster SG (1998) Amino acid sequences of both isoforms of crustacean hyperglycemic hormone (CHH) and corresponding precursor-related peptide in Cancer pagurus. Regul Pept 77:17–24

    Article  PubMed  CAS  Google Scholar 

  • Chung JS, Dircksen H, Webster SG (1999) A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc Natl Acad Sci USA 96:13103–13107

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver PF, Truman JW (1982) The role of eclosion hormone in the larval ecdyses of Manduca sexta. J Insect Physiol 28:695–701

    Article  CAS  Google Scholar 

  • Copenhaver PF, Truman JW (1986) Identification of the cerebral neurosecretory cells that contain eclosion hormone in the moth Manduca sexta. J Neurosci 6:1736–1747

    Google Scholar 

  • Davis NT, Homberg U, Dircksen H, Levine RB, Hildebrand JG (1993) Crustacean cardioactive peptide-immunoreactive neurons in the hawkmoth Manduca sexta and changes in their immunoreactivity during postembryonic development. J Comp Neurol 338:612–627

    Article  PubMed  CAS  Google Scholar 

  • Davis NT, Homberg U, Teal PEA, Altstein M, Agricola H-J, Hildebrand JG (1996) Neuroanatomy and immunocytochemistry of the median neuroendocrine cells of the subesophageal ganglion of the tobacco hawkmoth Manduca sexta: immunoreactivities to PBAN and other neuropeptides. Microsc Res Tech 35:201–229

    Article  PubMed  CAS  Google Scholar 

  • Davis NT, Blackburn MB, Golubeva EG, Hildebrand JG (2003) Localization of myoinhibitory peptide immunoreactivity in Manduca sexta and Bombyx mori, with indications that the peptide has a role in molting and ecdysis. J Exp Biol 206:1449–1460

    Article  PubMed  CAS  Google Scholar 

  • De Kleijn DPV, Coenen T, Laverdure AM, Tensen CP, Van Herp F (1992) Localization of mRNAs encoding the crustacean hyperglycemic hormone (CHH) and gonad-inhibiting hormone (GIH) in the X-organ sinus gland complex of the lobster Homarus americanus. J Neurosci 51:121–128

    Article  Google Scholar 

  • Dircksen H, Bocking D, Heyn U, Mandel C, Chung JS, Baggerman G, Verhaert P, Daufeldt S, Plosch T, Jaros PP, Waelkens E, Keller R, Webster SG (2001) Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochem J 356:159–170

    Article  PubMed  CAS  Google Scholar 

  • Endo H, Nagasawa H, Watanabe T (2000) Isolation of a cDNA encoding a CHH-family peptide from the silkworm Bombyx mori. Insect Biochem Mol Biol 30:355–361

    Article  PubMed  CAS  Google Scholar 

  • Ewer J, Truman JW (1997) Invariant association of ecdysis with increases in cyclic 3′,5′-guanosine monophosphate immunoreactivity in a small network of peptidergic neurons in the hornworm, Manduca sexta. J Comp Physiol [A] 181:319–330

    Article  CAS  Google Scholar 

  • Fuse M, Truman JW (2002) Modulation of ecdysis in the moth Manduca sexta: the roles of the suboesophageal and thoracic ganglia. J Exp Biol 205:1047–1058

    CAS  Google Scholar 

  • Fuse M, Bendena WG, Donly BC, Tobe SS, Orchard I (1998) In situ hybridization analysis of leucomyosuppressin mRNA expression in the cockroach, Diploptera punctata. J Comp Neurol 395:328–341

    Article  PubMed  CAS  Google Scholar 

  • Gade G (2004) Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annu Rev Entomol 49:93–113

    Article  PubMed  CAS  Google Scholar 

  • Gammie SC, Truman JW (1999) Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior. J Exp Biol 202:343–352

    PubMed  CAS  Google Scholar 

  • Gasparini S, Kiyatkin N, Drevet P, Boulain JC, Tacnet F, Ripoche P, Forest E, Grishin E, Menez A (1994) The low molecular weight protein which co-purifies with alpha-latrotoxin is structurally related to crustacean hyperglycemic hormones. J Biol Chem 269:19803–19809

    PubMed  CAS  Google Scholar 

  • Homberg U, Davis NT, Hildebrand JG (1991) Peptide-immunocytochemistry of neurosecretory cells in the brain and retrocerebral complex of the sphinx moth Manduca sexta. J Comp Neurol 303:35–52

    Article  PubMed  CAS  Google Scholar 

  • Horodyski FM, Riddiford LM, Truman JW (1989) Isolation and expression of the eclosion hormone gene of the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci USA 86:8123–8127

    Article  PubMed  CAS  Google Scholar 

  • Jaros PP, Gade G (1982) Evidence for a crustacean hyperglycemic hormone-like molecule in the nervous system of the stick insect, Carausius morosus. Cell Tissue Res 227:555–562

    Article  PubMed  CAS  Google Scholar 

  • Kegel G, Reichwein B, Weese S, Gaus G, Peter-Katalinic J, Keller R (1989) Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas. FEBS Lett 255:10–14

    Article  PubMed  CAS  Google Scholar 

  • Keller R (1992) Crustacean neuropeptides: structures, functions and comparative aspects. Experientia 48:439–448

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Spalovska-Valachova I, Cho KH, Zitnanova I, Park Y, Adams ME, Zitnan D (2004) Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci USA 101:6704–6709

    Article  PubMed  CAS  Google Scholar 

  • Lacombe C, Greve P, Martin G (1999) Overview on the sub-grouping of the crustacean hyperglycemic hormone family. Neuropeptides 33:71–80

    Article  PubMed  CAS  Google Scholar 

  • Lohr J, Klein J, Webster SG, Dircksen H (1993) Quantification, immunoaffinity purification and sequence analysis of a pigment-dispersing hormone of the shore crab, Carcinus maenas (L). Comp Biochem Physiol [B] 104:699–706

    Article  CAS  Google Scholar 

  • Macins A, Meredith J, Zhao Y, Brock HW, Phillips JE (1999) Occurrence of ion transport peptide (ITP) and ion transport-like peptide (ITP-L) in orthopteroids. Arch Insect Biochem Physiol 40:107–118

    Article  PubMed  CAS  Google Scholar 

  • Marco HG, Stoeva S, Voelter W, Gade G (2000) Characterization and sequence elucidation of a novel peptide with molt-inhibiting activity from the South African spiny lobster, Jasus lalandii. Peptides 21:1313–1321

    Article  PubMed  CAS  Google Scholar 

  • McCormick J, Nichols R (1993) Spatial and temporal expression identify dromyosuppressin as a brain-gut peptide in Drosophila melanogaster. J Comp Neurol 338:279–288

    Article  Google Scholar 

  • Meredith J, Ring M, Macins A, Marschall J, Cheng NN, Theilmann D, Brock HW, Phillips JE (1996) Locust ion transport peptide (ITP): primary structure, cDNA and expression in a baculovirus system. J Exp Biol 199:1053–1061

    PubMed  CAS  Google Scholar 

  • Miao Y, Waters EM, Witten JL (1998) Developmental and regional-specific expression of FLRFamide peptides in the tobacco hornworm, Manduca sexta, suggests functions at ecdysis. J Neurobiol 37:469–485

    Article  PubMed  CAS  Google Scholar 

  • Orchard I (1983) Neurosecretion: morphology and physiology. Endocrinology of insects. Liss, New York

    Google Scholar 

  • Ring M, Meredith J, Wiens C, Macins A, Brock HW, Phillips JE, Theilmann DA (1998) Expression of Schistocerca gregaria ion transport peptide (ITP) and its homologue (ITP-L) in a baculovirus/insect cell system. Insect Biochem Mol Biol 28:51–55

    Article  PubMed  CAS  Google Scholar 

  • Schneider LE, Sun ET, Garland DJ, Taghert PH (1993) An immunocytochemical study of the FMRFamide neuropeptide gene products in Drosophila. J Comp Neurol 337:446–460

    Article  PubMed  CAS  Google Scholar 

  • Sedlmeier D (1988) The crustacean hyperglycemic hormone (CHH) releases amylase from the crayfish midgut gland. Regul Pept 20:91–98

    Article  PubMed  CAS  Google Scholar 

  • Serrano L, Blanvillain G, Soyez D, Charmantier G, Grousset E, Aujoulat F, Spanings-Pierrot C (2003) Putative involvement of crustacean hyperglycemic hormone isoforms in the neuroendocrine mediation of osmoregulation in the crayfish Astacus leptodactylus. J Exp Biol 206:979–988

    Article  PubMed  CAS  Google Scholar 

  • Sithigorngul P, Panchan N, Chaivisuthangkura P, Longyant S, Sithigorngul W, Petsom A (2002) Differential expression of CMG peptide and crustacean hyperglycemic hormones (CHHs) in the eyestalk of the giant tiger prawn Penaeus monodon. Peptides 23:1943–1952

    Article  PubMed  CAS  Google Scholar 

  • Sithigorngul P, Nanda JC, Stretton AO (2003) A strategy for isolating rare peptides: isolation and sequencing of a large peptide present in a single neuron of the nematode Ascaris suum. Peptides 24:1025–1033

    Article  PubMed  CAS  Google Scholar 

  • Taghert PH, Truman JW, Reynolds SE (1980) Physiology of pupal ecdysis in the tobacco hornworm, Manduca sexta. II. Chemistry, distribution and release of eclosion hormone at pupal ecdysis. J Exp Biol 88:339–349

    CAS  Google Scholar 

  • Trimmer BA, Weeks JC (1989) Effects of nicotinic and muscarinic agents on an identified motoneurone and its direct afferent inputs in larval Manduca sexta. J Exp Biol 144:303–337

    Google Scholar 

  • Wainwright G, Webster SG, Wilkinson MC, Chung JS, Rees HH (1996) Structure and significance of mandibular organ-inhibiting hormone in the crab, Cancer pagurus. Involvement in multihormonal regulation of growth and reproduction. J Biol Chem 271:12749–12754

    Article  PubMed  CAS  Google Scholar 

  • Webster SG, Dircksen H, Chung JS (2000) Endocrine cells in the gut of the shore crab Carcinus maenas immunoreactive to crustacean hyperglycaemic hormone and its precursor-related peptide. Cell Tissue Res 300:193–205

    Article  PubMed  CAS  Google Scholar 

  • Wilcockson DC, Chung SJ, Webster SG (2002) Is crustacean hyperglycaemic hormone precursor-related peptide a circulating neurohormone in crabs? Cell Tissue Res 307:129–138

    Article  PubMed  CAS  Google Scholar 

  • Wise S, Davis NT, Tyndale E, Noveral J, Folwell MG, Bedian V, Emery IF, Siwicki KK (2002) Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J Comp Neurol 447:366–380

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Meredith J, Brock HW, Phillips JE (2005) Mutational analysis of the N-terminus in Schistocerca gregaria ion-transport peptide expressed in Drosophila Kc1 cells. Arch Insect Biochem Physiol 58:27–38

    Article  PubMed  CAS  Google Scholar 

  • Zitnan D, Adams ME (2000) Excitatory and inhibitory roles of central ganglia in initiation of the insect ecdysis behavioural sequence. J Exp Biol 203:1329–1340

    PubMed  CAS  Google Scholar 

  • Zitnan D, Adams ME (2005) Neuroendocrine regulation of insect ecdysis. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive insect biochemistry, physiology, pharmacology, and molecular biology, vol 3. Elsevier, London, pp 1–60

    Google Scholar 

Download references

Acknowledgments

We are grateful to Frank Horodyski for the generous donation of the M. sexta cDNA library, to Frank Cipriano (and the Conservation Genetics Lab) for extensive intellectual and technical help with regard to molecular sequencing, and to Ernest Chang for testing M. sexta hemolymph with his lobster ELISA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Fuse.

Additional information

This research was funded by the National Institutes of Health (MBRS SCORE Program-NIGMS) to M.F. (grant no. 2S06 GM52588-09), by the National Center on Minority Health and Health Disparities (grant no. 5P20-MD000262), an NIH RISE graduate fellowship to A.L.D. (5 R25 GM59298), an NIH PREP fellowship to C.C.H. and M.A.U. (5 R25 GM64078), an NSF CSU LS-AMP fellowship to C.C.H. (HRD-9802113), and by NIH MBRS-MARC to M.D.P. (T34 GM08574) and NIH MA/MS-PhD Bridge Scholarship to A.L.D. and C.C.H. (5R25 GM48972).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, A.L., Harris, C.C., dela Pena, M.G. et al. Molecular characterization and cell-specific expression of an ion transport peptide in the tobacco hornworm, Manduca sexta . Cell Tissue Res 329, 391–408 (2007). https://doi.org/10.1007/s00441-007-0391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0391-9

Keywords

Navigation