Skip to main content
Log in

Morphofunctional changes in Leydig cells throughout the continuous spermatogenesis of the freshwater teleost fish, Serrasalmus spilopleura (Characiformes, Characidae): an ultrastructural and enzyme study

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The freshwater fish Serrasalmus spilopleura (piranha) has a continuous type of reproduction; gametes are constantly produced and released during the reproductive cycle. The testes do not undergo seasonal morphological changes but exhibit two constant regions throughout the year: the medullar region (involved with spermatogenesis) and the cortical region (involved with spermiation and sperm storage). We have evaluated the ultrastructure of the Leydig cells and the activity of 3β-HSD (an essential enzyme related to steroid hormone biosynthesis) and acid phosphatase (AcPase; lysosomal marker enzyme) in these two regions. The activity of 3β-HSD is stronger in the medullar region, and the Leydig cells in this region have a variety of cytological features that reflect differences in hormone synthesis and/or that could be linked to steroidogenic cells under various degrees of hormonal activity. In the cortical region, 3β-HSD activity is weak and the Leydig cells exhibit signs of degeneration, as confirmed by their ultrastructure and intense AcPase activity. These degenerative signs are indicative of cytoplasmic remodelling to degrade steroidogenic enzymes, such as 3β-HSD, that could lead to senescence or even to autophagic cell degeneration. S. spilopleura thus constitutes an interesting model for increasing our understanding of steroidogenesis control in freshwater teleost fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  • Akingbemi BT, Ge R-S, Hardy MP (1999) Leydig cells. In: Knobil E, Neill JD (eds) Encyclopedia of reproduction, vol 2. Academic Press, San Diego, pp 1021–1033

    Google Scholar 

  • Borges Filho OF (1987) Caracterização dos estádios de maturação e correlação com avaliações histoquímico-enzimáticas e ultra-estruturais das células endócrinas testiculares, durante o ciclo reprodutivo do Prochilodus scrofa - Steindachner 1881. Tese de Doutorado, Instituto de Biociências da Universidade de São Paulo, São Paulo

  • Bottone MG, Soldani C, Fraschini A, Alpini C, Croce AC, Bottiroli G, Pellicciari C (2006) Enzyme-assisted photosensitization with rose Bengal acetate induces structural and functional alteration of mitochondria in HeLa cells. Histochem Cell Biol, DOI 10.1007/s00418-006-0235-9

  • Carvalho HF (2001) Envoltório nuclear. In: Carvalho HF, Recco-Pimentel S (eds) A Célula 2001. Editora Manole, Tamboré-Barueri, Brazil, pp 77–87

    Google Scholar 

  • Cauty C, Loir M (1995) The interstitial cells of the trout testis (Oncorhynchus mykiss): ultrastructural characterization and changes throughout the reproductive cycle. Tissue Cell 27:383–395

    Article  PubMed  CAS  Google Scholar 

  • Cavaco JEB, Van Blijswijk B, Leatherland JF, Goos HJT, Schulz RW (1999) Androgen-induced changes in Leydig cell ultrastructure and steroidogenesis in juvenile African catfish, Clarias gariepinus. Cell Tissue Res 297:291–299

    Article  PubMed  CAS  Google Scholar 

  • Cinquetti R, Dramis L (2003) Histological, histochemical, enzyme histochemical and ultrastructural investigations of the testis of Padogobius martensi between annual breeding seasons. J Fish Biol 63:1402–1428

    Article  CAS  Google Scholar 

  • Civinini A, Padula D, Gallo VP (2001) Ultrastructural and histochemical study on the interrenal cells of the male stickleback (Gasterosteus aculeatus, Teleostei), in relation to the reproductive annual cycle. J Anat 199:303–316

    Article  PubMed  CAS  Google Scholar 

  • Cruz Landim C, Reginato RD, Moraes RL, Cavalcante VM (2002) Cell nucleus activity during post-embryonic development in Apis mellifera L. (Hymenoptera: Apidae). Intranuclear acid phosphatase. Genet Mol Res 1:131–138

    PubMed  Google Scholar 

  • Custodio AM, Goes RM, Taboga SR (2004) Acid phosphatase activity in gerbil prostate: comparative study in male and female during postnatal development. Cell Biol Int 28:335–344

    Article  PubMed  CAS  Google Scholar 

  • Fujihara CY (1997) Dinâmica populacional de Serrasalmus spilopleura, Kner 1860 no reservatório de Jurumirim (rio Paranapanema, SP): aspectos do crescimento, estrutura populacional, reprodução e nutrição. Dissertação de Mestrado, Instituto de Biociências, UNESP, Botucatu, SP, Brasil

  • Gaytan F, Bellido C, Aguilar E, Van Rooijen N (1994) Requirement for testicular macrophages in Leydig cell proliferation and differentiation during prepubertal development in rats. J Reprod Fertil 102:393–399

    Article  PubMed  CAS  Google Scholar 

  • Grier HJ (2002) The germinal epithelium: its dual role in establishing male reproductive classes and understanding the basis for indeterminate egg production in female fishes. In: Creswell RL (ed) Proceedings of the Fifty-third Annual Gulf and Caribbean Fisheries Institute, November 2000. Mississippi/Alabama Sea Grant Consortium, Fort Pierce, pp 537–552

    Google Scholar 

  • Haider SG (2004) Cell biology of Leydig cells in the testis. Int Rev Cytol 233:181–241

    Article  PubMed  CAS  Google Scholar 

  • Haider SG, Servos G (1998) Ultracytochemistry of 3β-hydroxysteroid dehydrogenase in Leydig cell precursors and vascular endothelial cells of the postnatal rat testis. Anat Embryol 198:101–110

    Article  PubMed  CAS  Google Scholar 

  • Hales DB (1996) Leydig cell-macrophage interactions: an overview. In: Payne AH, Hardy MP, Russell LD (eds) The Leydig cell. Cache River, Vienna, Ill., pp 452–475

    Google Scholar 

  • Lamas IR, Godinho AL (1996) Reproduction in the piranha Serrasalmus spilopleura, a neotropical fish with an unusual pattern of sexual maturity. Environ Biol Fishes 45:161–168

    Article  Google Scholar 

  • Leão ELM (1996) Reproductive biology of piranhas (Teleostei, Characiformes). In: Val AL, Almeida-Val VMF, Randall DJ (eds) Physiology and biochemistry of fishes of the Amazon. Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil, pp 31–41

    Google Scholar 

  • Lister A, Van der Kraak G (2002) Modulation of goldfish testicular testosterone production in vitro by tumor necrosis factor α, interleukin-1β, and macrophage conditioned media. J Exp Zool 292:477–486

    Article  PubMed  CAS  Google Scholar 

  • Lo Nostro F, Grier H, Andreone L, Guerrero GA (2003) Involvement of the gonadal germinal epithelium during sex reversal and seasonal testicular cycling in the protogynous swamp eel, Synbranchus marmoratus Bloch 1795 (Teleostei, Synbranchidae). J Morphol 257:107–126

    Article  PubMed  Google Scholar 

  • Lo Nostro FL, Antoneli FN, Quagio-Grassiotto I, Guerrero GA (2004) Testicular interstitial cells, and steroidogenic detection in the protogynous fish, Synbranchus marmoratus (Teleostei, Synbranchidae). Tissue Cell 36:221–231

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Miura CI (2003) Molecular control mechanisms of fish spermatogenesis. Fish Physiol Biochem 28:181–186

    Article  CAS  Google Scholar 

  • Miura T, Higuchi M, Ozaki Y, Ohta T, Miura C (2006) Progestin is an essential factor for the initiation of the meiosis in spermatogenetic cells of the eel. Proc Natl Acad Sci USA 103:7333–7338

    Article  PubMed  CAS  Google Scholar 

  • Pino RM, Pino LC, Bankston PW (1981) The relationships between the Golgi apparatus, GERL, and lysosomes of fetal rat liver Kupffer cells examined by ultrastructural phosphatase cytochemistry. J Histochem Cytochem 29:1061–1070

    PubMed  CAS  Google Scholar 

  • Pudney J (1996) Comparative cytology of the Leydig cell. In: Payne AH, Hardy MP, Russell LD (eds) The Leydig cell. Cache River, Vienna, Ill., pp 98–142

    Google Scholar 

  • Pudney J (1999) Leydig and Sertoli cells, nonmammalian. In: Knobil E, Neill JD (eds) Encyclopedia of reproduction, vol 2. Academic Press, San Diego, pp 1008–1020

    Google Scholar 

  • Quintero-Hunter I, Grier H, Muscato M (1991) Enhancement of histological detail using Metanil yellow as counterstain in periodic acid/Schiff’s hematoxylin staining of glycol methacrylate tissue sections. Biotech Histochem 66:169–172

    PubMed  CAS  Google Scholar 

  • Schleser DM (1997) Piranhas: everything about origins, care, feeding, diseases, breeding, and behavior. Barron’s Educational Series, New York

    Google Scholar 

  • Schulz RW, Miura T (2002) Spermatogenesis and its endocrine regulation. Fish Physiol Biochem 26:43–56

    Article  CAS  Google Scholar 

  • Shanbhag AB, Nadkarni VB (1979) Histological and histochemical studies on the testicular cycle of a fresh water teleost Channa gachua (Hamilton). Anat Anz 146:381–389

    PubMed  CAS  Google Scholar 

  • Sun XR, Risbridger GP (1994) Site of macrophage inhibition of luteinizing hormone-stimulated testosterone production by purified Leydig cells. Biol Reprod 50:363–367

    Article  PubMed  CAS  Google Scholar 

  • Van den Hurk R, Peute J, Vermeij JAJ (1978) Morphological and enzyme cytochemical aspects of the testis and vas deferens of the rainbow trout, Salmo gairdneri. Cell Tissue Res 186:309–325

    Article  PubMed  Google Scholar 

  • Van Vuren JHJ, Soley JT (1990) Some ultrastructural observations of Leydig and Sertoli cells in the testis of Tilapia rendalli following induced testicular recrudescence. J Morphol 206:57–63

    Article  Google Scholar 

  • Wakabayashi T (1999) Structural changes of mitochondria related to apoptosis: swelling and megamitochondria formation. Acta Biochim Pol 46:223–237

    PubMed  CAS  Google Scholar 

  • Watson ME, Newman RJ, Payne AM, Abdelrahim M, Francis GL (1994) The effect of macrophage conditioned media on Leydig cell function. Ann Clin Lab Sci 24:84–95

    PubMed  CAS  Google Scholar 

  • Yoon YS, Yoon DS, Lim IK, Yoon SH, Chung HY, Rojo M, Malka F, Jou MJ, Martinou JC, Yoon G (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 209:468–480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Centro de Microscopia Eletrônica and the Laboratório de Reprodução de Peixes Neotropicais, Departamento de Morfologia, IBB, UNESP, Botucatu, for the use of their facilities. We are also grateful to Maria Helena Moreno for help with the electron micrographs, to Antonio Vicente Salvador and Sueli Cruz Michelin for histological support and to Drs. Fabiana Lo Nostro, Denise Vizziano, Daniela Carvalho dos Santos and Maeli Dal Pai Silva for suggestions regarding the histochemical reactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Quagio-Grassiotto.

Additional information

This research was supported by FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo (03/11078-9 and 04/01262-0).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nóbrega, R.H., Quagio-Grassiotto, I. Morphofunctional changes in Leydig cells throughout the continuous spermatogenesis of the freshwater teleost fish, Serrasalmus spilopleura (Characiformes, Characidae): an ultrastructural and enzyme study. Cell Tissue Res 329, 339–349 (2007). https://doi.org/10.1007/s00441-006-0377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0377-z

Keywords

Navigation