Skip to main content

Advertisement

Log in

Localisation of caveolin in mammary tissue depends on cell type

  • Editorial
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Caveolins, components of caveolae, are expressed in mammary tissue. In order to determine whether caveolins are present in different mammary cell types and whether their localisation depends on the physiological stage or species, cav-1 and cav-2 were characterised by immunoblotting in mammary tissues from the mouse, ewe and rabbit and localised, by immunofluorescence and electron microscopy, in mammary tissues from the mouse and ewe. At all the physiological stages studied, cav-1 and cav-2 were present in endothelial and myoepithelial cells in which flask-shaped caveolae were abundant. However, labelling of cav-1 and cav-2 associated with small vesiculo-tubular structures (including those close to lipid droplets) was low in epithelial cells. To study the possible association of cav-1 with lipid droplets, lactating ewe mammary fragments were treated in vitro with brefeldin A. This treatment did not modify the association of cav-1-labelled structures with lipid droplets. Finally, HC11 and MCF-10A mammary cell lines were treated with oleic acid. The total quantity of cav-1 was little affected by the treatment, although the lipid droplet labelling of cav-1 was amplified in MCF-10A cells. Thus, the synthesis and localisation of caveolins are mostly dependent upon the cell types of mammary tissue and upon their state of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38:2249–2263

    PubMed  CAS  Google Scholar 

  • Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A (2005) Clathrin- and caveolin-1-independent endocytosis: entry of Simian virus 40 into cells devoid of caveolae. J Cell Biol 168:477–488

    Article  PubMed  CAS  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268

    Article  PubMed  CAS  Google Scholar 

  • Deugnier MA, Teulière J, Faraldo MM, Thiery JP, Glukhova MA (2002) The importance of being a myoepithelial cell. Breast Cancer Res 4:224–230

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Lüder MR, Kartenbeck J, Zerban H, Keenan TW (1976) Involvement of vesicle coat material in casein secretion and surface regeneration. J Cell Biol 69:173–195

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Schmid E, Freudenstein C, Appelhans B, Osborn M, Weber K, Keenan TW (1980) Intermediate-sized filaments of the prekeratin type in myoepithelial cells. J Cell Biol 84:633–654

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R (2001) Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J Cell Biol 152:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Guzzi F, Zanchetta D, Cassoni P, Guzzi V, Francolini M, Parenti M, Chini B (2002) Localization of the human oxytocin receptor in caveolin-1 enriched domains turns the receptor-mediated inhibition of cell growth into a proliferative response. Oncogene 21:1658–1667

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Matsuda S, Machida K, Yamamoto T, Fukuda Y, Nimura Y, Hayakawa T, Hamaguchi M (2001) Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res 61:2361–2364

    PubMed  CAS  Google Scholar 

  • Keenan TW (2001) Milk lipid globules and their surrounding membranes: a brief history and perspectives for future research. J Mammary Gland Biol Neoplasia 6:365–371

    Article  PubMed  CAS  Google Scholar 

  • Keenan TW, Huang CM (1972) Membranes of mammary gland. VI. Lipid and protein composition of Golgi apparatus and rough endoplasmic reticulum from bovine mammary gland. J Dairy Sci 55:1586–1596

    Article  PubMed  CAS  Google Scholar 

  • Krajewska WM, Maslowska I (2004) Caveolins: structure and function in signal transduction. Cell Mol Biol Lett 9:195–220

    PubMed  CAS  Google Scholar 

  • Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnet M, Simons K (1992) VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol 118:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Lavialle F, Rainteau D, Massey-Harroche D, Metz F (2000) Establishment of plasma membrane polarity in mammary epithelial cells correlates with changes in prolactin trafficking and in annexin VI recruitment to membranes. Biochim Biophys Acta 1464:83–94

    Article  PubMed  CAS  Google Scholar 

  • Le Lay S, Kurzchalia TV (2005) Getting rid of caveolins: phenotypes of caveolin-deficient animals. Biochim Biophys Acta 1746:322–333

    Article  PubMed  CAS  Google Scholar 

  • Li XA, Everson WV, Smart EJ (2005) Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc Med 15:92–96

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Rudick M, Anderson RGW (2002) Multiple functions of caveolin-1. J Biol Chem 277:41295–41298

    Article  PubMed  CAS  Google Scholar 

  • Lkhider M, Delpal S, Ollivier-Bousquet M (1996) Rat prolactin in serum, milk, and mammary tissue: characterization and intracellular localization. Endocrinology 137:4969–4979

    Article  PubMed  CAS  Google Scholar 

  • Lollivier V, Guinard-Flament J, Ollivier-Bousquet M, Marnet P-G (2002) Oxytocin and milk removal: two important sources of variation in milk production and milk quality during and between milkings. Reprod Nutr Dev 42:173–186

    Article  PubMed  CAS  Google Scholar 

  • Lollivier V, Marnet PG, Delpal S, Rainteau D, Achard C, Rabot A, Ollivier-Bousquet M (2006) Oxytocin stimulates secretory processes in lactating rabbit mammary epithelial cells. J Physiol (Lond) 570:125–140

    Article  CAS  Google Scholar 

  • Martin S, Parton RG (2005) Caveolin, cholesterol, and lipid bodies. Semin Cell Dev Biol 16:163–174

    Article  PubMed  CAS  Google Scholar 

  • Masso-Welch PA, Darcy KM, Strangle-Castor NC, Ip MM (2002) A developmental atlas of rat mammary histology. J Mammary Gland Biol Neoplasia 5:165–185

    Article  Google Scholar 

  • Monks J, Neville MC (2004) Albumin transcytosis across the epithelium of the lactating mouse mammary gland. J Physiol (Lond) 560:267–280

    Article  CAS  Google Scholar 

  • Navarro A, Anand-Apte B, Parat MO (2004) A role for caveolae in cell migration. FASEB J 18:1801–1811

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  • Ollivier-Bousquet M (2002) Milk lipid and protein traffic in mammary epithelial cells: joint and independent pathways. Reprod Nutr Dev 42:149–162

    Article  PubMed  CAS  Google Scholar 

  • Ostermeyer AG, Paci JP, Zeng Y, Lublin DM, Munro S, Brown DA (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 152:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1953) Fine structure of blood capillaries. J Appl Physiol 24:1424

    Google Scholar 

  • Park DS, Lee H, Riedel C, Hulit J, Scherer PE, Pestell RG, Lisanti MP (2001) Prolactin negatively regulates caveolin-1 gene expression in the mammary gland during lactation, via a Ras-dependent mechanism. J Biol Chem 276:48389–48397

    PubMed  CAS  Google Scholar 

  • Park DS, Lee H, Frank PG, Razani B, Nguyen AV, Parlow AF, Russell RG, Hulit J, Pestell RG, Lisanti MP (2002) Caveolin-1 deficient mice show accelerated mammary gland development during pregnancy, premature lactation and hyperactivation of the Jak2/STAT 5a signaling cascade. Mol Biol Cell 13:3416–3430

    Article  PubMed  CAS  Google Scholar 

  • Parton RG (1994) Ultrastructural localization of gangliosides: GM1 is concentrated in caveolae. J Histochem Cytochem 42:155–166

    PubMed  CAS  Google Scholar 

  • Pauloin A, Delpal S, Chanat E, Lavialle F, Aubourg A, Ollivier-Bousquet M (1997) Brefeldin A differently affects basal and prolactin-stimulated milk protein secretion in lactating rabbit mammary epithelial cells. Eur J Cell Biol 72:324–336

    PubMed  CAS  Google Scholar 

  • Pauloin A, Ollivier-Bousquet M, Chanat E (2004) Le double-jeu de la protéine TIP47. Médecine/Sciences 20:1020–1025

    Google Scholar 

  • Péchoux C, Gudjonsson T, Ronnov-Jessen L, Bissell MJ, Petersen OW (1999) Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev Biol 206:88–99

    Article  PubMed  Google Scholar 

  • Pitelka DR, Hamamoto ST (1983) Ultrastructure of the mammary secretory cells. In: Mepham TB (ed) Biochemistry of lactation. Elsevier, Amsterdam, pp 29–70

    Google Scholar 

  • Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG (2001) A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 152:1057–1070

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Martin S, Fernandez A, Ferguson C, Carozzi A, Luetterforst R, Enrich R, Parton RG (2004) Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol Biol Cell 15:99–110

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG (2005) Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Biol Cell 16:2091–2105

    Article  PubMed  CAS  Google Scholar 

  • Rabouille C (1999) Quantitative aspects of immunogold labelling in embedded and non-embedded sections. In: Haijibagheri N (ed) Electron microscopy methods and protocols, vol 117. Humana, Clifton, N.J., pp 125–147

    Chapter  Google Scholar 

  • Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467

    Article  PubMed  CAS  Google Scholar 

  • Renou JP, Bierie B, Miyoshi K, Cui Y, Djiane J, Reichenstein M, Shani M, Hennighausen L (2003) Identification of genes differentially expressed in mouse mammary epithelium transformed by an activated β-catenin. Oncogene 22:4594–4610

    Article  PubMed  CAS  Google Scholar 

  • Rimoldi V, Reversi A, Taverna E, Rosa P, Francolini M, Cassoni P, Parenti M, Chini B (2003) Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domain. Oncogene 22:6054–6060

    Article  PubMed  CAS  Google Scholar 

  • Robenek MJ, Severs NJ, Schlattmann K, Plenz G, Zimmer KP, Troyer D, Robenek H (2004) Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J 18:866–868

    PubMed  CAS  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC (2003) Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 8:287–307

    Article  PubMed  Google Scholar 

  • Sagara Y, Mimori K, Yoshinaga K, Tanaka F, Nishida K, Ohno S, Inoue H, Mori M (2004) Clinical significance of caveolin-1, caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer 91:959–965

    PubMed  CAS  Google Scholar 

  • Sbaa E, Frérart F, Feron O (2005) The double regulation of endothelial nitric oxide synthetase by caveolae and caveolin: a paradox solved through the study of angiogenesis. Trends Cardiovasc Med 15:157–162

    Article  PubMed  CAS  Google Scholar 

  • Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23:7893–7897

    Article  PubMed  CAS  Google Scholar 

  • Smart EJ, Ying YS, Conrad PA, Anderson RGW (1994) Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol 127:1185–1197

    Article  PubMed  CAS  Google Scholar 

  • Sotgia F, Williams TM, Cohen AW, Minetti C, Pestell RG, Lisanti MP (2005) Caveolin-1 deficient mice have an increased mammary stem cell population with upregulation of Wnt/β-catenin signaling. Cell Cycle 4:1808–1816

    PubMed  CAS  Google Scholar 

  • Stan RV (2002) Structure and function of endothelial caveolae. Microsc Res Tech 57:350–364

    Article  PubMed  Google Scholar 

  • Stan RV (2005) Structure of caveolae. Biochim Biophys Acta 1746:334–348

    Article  PubMed  CAS  Google Scholar 

  • Williams TM, Lisanti MP (2004) The caveolin genes: from cell biology to medicine. Ann Med 36:584–595

    Article  PubMed  CAS  Google Scholar 

  • Wu CC, Howell KE, Neville MC, Yates JR, McManaham JL (2000) Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 21:3470–3482

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Zeng X, Waldman T, Glazer RI (2003) Transformation of mammary epithelial cells by 3-phosphoinositide-dependent protein kinase-1 activates β-catenin and c-Myc, and down-regulates caveolin-1. Cancer Res 63:5370–5375

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Eve Devinoy and Eric Chanat for their helpful comments, to Serge Delpal for his competent assistance and to Marie-Elisabeth Marmillod for her secretarial skills.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Ollivier-Bousquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hue-Beauvais, C., Péchoux, C., Bouguyon, E. et al. Localisation of caveolin in mammary tissue depends on cell type. Cell Tissue Res 328, 521–536 (2007). https://doi.org/10.1007/s00441-006-0370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0370-6

Keywords

Navigation