Skip to main content

Advertisement

Log in

In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Non-invasive intratissue ablation was performed in the cornea of living rabbits by using 80 MHz near-infrared intense nanojoule femtosecond laser pulses. The intratissue surgical effect was induced by multiphoton absorption at a wavelength of 800 nm and was ascertained by histological examination. Highly precise intratissue ablation was obtained with no detrimental effects to the overlying or underlying layers. Activated keratocytes in the laser-treated corneas were detected with two-photon imaging postoperatively. Intratissue femtosecond laser ablation thus has potential as a effective technique in refractive surgery for the treatment of visual disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldwin HC, Marshall J (2002) Growth factors in corneal wound healing following refractive surgery: a review. Acta Ophthalmol Scand 80:238–247

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti S, Wu F, Vij N, Roberts L, Joyce S (2004) Microarray studies reveal macrophage-like function of stromal keratocytes in the cornea. Invest Ophthalmol Vis Sci 45:3475–3484

    Article  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  • Funderburgh JL, Funderburgh ML, Mann MM, Corpuz L, Roth MR (2001) Proteoglycan expression during transforming growth factor beta-induced keratocyte-myofibroblast transdifferentiation. J Biol Chem 276:44173–44178

    Article  PubMed  CAS  Google Scholar 

  • Garcia ZE, Rothenberg ME, Ownbey RT, Celestin J, Leder P, Luster AD (1996) Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med 2:449–456

    Article  Google Scholar 

  • Juhasz T, Kastis GA, Suárez C, Bor Z, Bron WE (1996) Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Lasers Surg Med 19:23–31

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Chang JH, Azar DT (2003) Expression of type XVIII collagen during healing of corneal incisions and keratectomy wounds. Invest Ophthalmol Vis Sci 44:78–85

    Article  PubMed  Google Scholar 

  • Kohli V, Elezzabi AY, Acker JP (2005) Cell nanosurgery using ultrashort laser pulses: applications to membrane surgery and cell isolation. Lasers Surg Med 37:227–230

    Article  PubMed  Google Scholar 

  • König K, Riemann I, Fischer P, Halbhuber KJ (1999) Intracellular nanosurgery with near infrared femtosecond laser pulses. Cell Mol Biol (Noisy-le-grand) 45:195–201

    Google Scholar 

  • König K, Riemann I, Fritzsche W (2001) Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt Lett 26:819–821

    PubMed  Google Scholar 

  • König K, Riemann I, Krauss O, Fritzsche W (2002a) Nanodissection of human chromosomes and ultraprecise eye surgery with nanojoule near-infrared femtosecond laser pulses. Proc SPIE 4633:11–22

    Article  Google Scholar 

  • König K, Krauss O, Riemann I (2002b) Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared. Opt Express 10:171–176

    Google Scholar 

  • Kurtz RM, Horvath C, Liu HH, Krueger RR, Juhasz T (1998) Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes. J Refract Surg 14:541–548

    PubMed  CAS  Google Scholar 

  • Lee BH, McLaren JW, Erie JC, Hodge DO, Bourne WM (2002) Reinnervation in the cornea after LASIK. Invest Ophthalmol Vis Sci 43:3660–3664

    PubMed  Google Scholar 

  • Light ND (1979) Bovine type I collagen: a study of cross-linking in various mature tissues. Biochim Biophys Acta 581:96–105

    PubMed  CAS  Google Scholar 

  • Linna T, Vesaluoma M, Pérez-Santonja J, Petroll W, Alió J, Tervo T (2000) Effect of myopic LASIK on corneal sensitivity and morphology of subbasal nerves. Invest Ophthalmol Vis Sci 41:393–397

    PubMed  CAS  Google Scholar 

  • Lubatschowski H, Maatz G, Heisterkamp A, Hetzel U, Drommer W, Welling H, Ertmer W (2000) Application of ultrashort laser pulses for intrastromal refractive surgery. Graefe’s Arch Clin Exp Ophthalmol 238:33–39

    Article  CAS  Google Scholar 

  • Maltseva O, Folger P, Zekaria D, Petridou S, Masur SK (2001) Fibroblast growth factor reversal of the corneal myofibroblast phenotype. Invest Ophthalmol Vis Sci 42:2490–2495

    PubMed  CAS  Google Scholar 

  • Masur SK, Dewal HS, Dinh TT, Erenburg I, Petridou S (1996) Myofibroblasts differentiate from fibroblasts when plated at low density. Proc Natl Acad Sci USA 93:4219–4223

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu K, Tanaka M, Konomi H, Hayashi T (1986) Distribution of types I, II, III, IV and V collagen in normal and keratoconus corneas. Ophthalmic Res 18:1–10

    Article  PubMed  CAS  Google Scholar 

  • Netzel-Arnett S, Mitola DJ, Yamada SS, Chrysovergis K, Holmbeck K, Birkedal-Hansen H, Bugge TH (2002) Collagen dissolution by keratinocytes requires cell surface plasminogen activation and matrix metalloproteinase activity. J Biol Chem 277:45154–45161

    Article  PubMed  CAS  Google Scholar 

  • Ronzière MC, Aubert-Foucher E, Gouttenoire J, Bernaud J, Herbage D, Mallein-Gerin F (2005) Integrin α1β1 mediates collagen induction of MMP-13 expression in MC615 chondrocytes. Biochim Biophys Acta 1746:55–64

    Article  PubMed  CAS  Google Scholar 

  • Stern D, Schoenlein RW, Puliafito CA, Dobi ET, Birngruber R, Fujimoto JG (1989) Ablation by nanosecond, picosecond, and femtosecond lasers at 532 nm and 625 nm. Arch Ophthalmol 107:587–592

    PubMed  CAS  Google Scholar 

  • Stuart BC, Feit MD, Herman S, Rubenchik AM, Shore BM, Perry MD (1996) Optical ablation by high-power short-pulse lasers. J Opt Soc Am [B] 13:459–468

    Article  CAS  Google Scholar 

  • Tirlapur UK, König K (2002) Targeted transfection by femtosecond laser. Nature 418:290–291

    Article  PubMed  CAS  Google Scholar 

  • Tseng SC, Smuckler D, Stern R (1982) Comparison of collagen types in adult and fetal bovine corneas. J Biol Chem 257:2627–2633

    PubMed  CAS  Google Scholar 

  • Vogel A, Noack J, Nahen K, Theisen D, Busch S, Parlitz U, Hammer D, Noojin G, Rockwell B, Birngruber R (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl Phys [B] 68:271–280

    Article  CAS  Google Scholar 

  • Wang BG, Halbhuber KJ, Riemann I, Koenig K (2005) In-vivo corneal nonlinear optical tomography based on second harmonic and multiphoton autofluorescence imaging induced by near-infrared femtosecond lasers. Proc SPIE 5964:1–11

    Article  Google Scholar 

  • Wang BG, Koenig K, Riemann I, Krieg R, Halbhuber KJ (2006) Intraocular multiphoton microscopy with subcellular spatial resolution by infrared femtosecond lasers. Histochem Cell Biol 126:507–515

    Article  PubMed  CAS  Google Scholar 

  • Watanabe W, Arakawa N, Matsunaga S, Higashi T, Fukui K, Isobe K, Itoh K (2004) Femtosecond laser disruption of subcellular organelles in a living cell. Opt Express 12:4203–4213

    Article  PubMed  Google Scholar 

  • Zimmermann DR, Trueb B, Winterhalter KH, Witmer R, Fischer RW (1986) Type VI collagen is a major component of the human cornea. FEBS Lett 197:55–58

    Article  PubMed  CAS  Google Scholar 

  • Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99:11014–11019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical support from JenLab, which provided the laser and the modified microscope. We thank Prof. Chris P. Lohmann (Eye Hospital Rechts der Isar, TU Munich), Christof Donitzky (WaveLight), Prof. Karl-Otto Greulich (Institute of Molecular Technology), Dr. Allan Spessa (Max Planck Institute), and Shuping Song (University of Jena) for their stimulating discussions. We are also grateful to Sigrun Kirste (Institute of Laboratory Animal Science) and to Ursula Eschler, Isa Lemke, Michael Szabó, and Helmut Hörig (Institute of Anatomy II) for their outstanding technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Koenig.

Additional information

This work was supported in part by the German Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, BG., Riemann, I., Schubert, H. et al. In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses. Cell Tissue Res 328, 515–520 (2007). https://doi.org/10.1007/s00441-006-0367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0367-1

Keywords

Navigation