Skip to main content
Log in

Rho-family small GTPases are involved in forskolin-induced cell-cell contact formation of renal glomerular podocytes in vitro

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Intercellular adhesions between renal glomerular epithelial cells (also called podocytes) are necessary for the proper function of the glomerular filtration barrier. Although our knowledge of the molecular composition of podocyte cell-cell contact sites has greatly progressed, the underlying molecular mechanism regulating the formation of these cell-cell contacts remains largely unknown. We have used forskolin, an activator of adenylyl cyclase that elevates the level of intracellular cAMP, to investigate the effect of cAMP and three Rho-family small GTPases (RhoA, Cdc42, and Rac1) on the regulation of cell-cell contact formation in a murine podocyte cell line. Transmission electron microscopy and the immunostaining of cell adhesion molecules and actin-associated proteins have revealed a structural change at the site of cell-cell contact following forskolin treatment. The activity of the Rho-family small GTPases before and after forskolin treatment has been evaluated with a glutathione-S-transferase pull-down assay. Forskolin reinforces the integrity of cell-cell contacts, resulting in the closure of an intercellular adhesion zipper, accompanied by a redistribution of cell adhesion molecules and actin-associated proteins in a continuous linear pattern at cell-cell contacts. The Rho-family small GTPases Rac1 and Cdc42 are activated during closure of the adhesion zipper, whereas RhoA is suppressed. Thus, cAMP promotes the assembly of cell-cell contacts between podocytes via a mechanism that probably involves Rho-family small GTPases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asanuma K, Mundel P (2003) The role of podocytes in glomerular pathobiology. Clin Exp Nephrol 7:255–259

    Article  PubMed  CAS  Google Scholar 

  • Asanuma K, Yanagida-Asanuma E, Faul C, Tomino Y, Kim K, Mundel P (2006) Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signaling. Nat Cell Biol 8:485–491

    Article  PubMed  CAS  Google Scholar 

  • Boucher MJ, Laprise P, Rivrd N (2005) Cyclic AMP-dependent protein kinase A negatively modulates adherens junction integrity and differentiation of intestinal epithelial cells. J Cell Physiol 202:178–190

    Article  PubMed  CAS  Google Scholar 

  • Dong JM, Leung T, Manser E, Lim L (1998) cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKalpha. J Biol Chem 273:22554–22562

    Article  PubMed  CAS  Google Scholar 

  • Durvasula RV, Shankland SJ (2006) Podocyte injury and targeting therapy: an update. Curr Opin Nephrol Hypertens 15:1–7

    PubMed  Google Scholar 

  • El Sayegh TY, Arora PD, Laschinger CA, Lee W, Morrison C, Overall CM, Kapus A, McCulloch CA (2004) Cortactin associates with N-cadherin adhesions and mediates intercellular adhesion strengthening in fibroblasts. J Cell Sci 117:5117–5131

    Article  PubMed  CAS  Google Scholar 

  • Ellerbroek SM, Wennerberg K, Burridge K (2003) Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 278:19023–19031

    Article  PubMed  CAS  Google Scholar 

  • Gao SY, Li CY, Chen J, Pan L, Saito S, Terashita T, Saito K, Miyawaki K, Shigemoto K, Mominoki K, Matsuda S, Kobayashi N (2004) Rho ROCK signal pathway regulates microtubule based process formation of cultured podocytes inhibition of ROCK promoted process elongation. Nephron Exp Nephrol 97:e49–e61

    Article  PubMed  CAS  Google Scholar 

  • Helwani FM, Kovacs EM, Paterson AD, Verma S, Ali RG, Fanning AS, Weed SA, Yap AS (2004) Cortactin is necessary for E-cadherin-mediated contact formation and actin reorganization. J Cell Biol 164:899–910

    Article  PubMed  CAS  Google Scholar 

  • Howe AK (2004) Regulation of actin-based cell migration by cAMP/PKA. Biochim Biophys Acta 1692:159–174

    PubMed  CAS  Google Scholar 

  • Huber TB, Benzing T (2005) The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 14:211–216

    Article  PubMed  Google Scholar 

  • Inoue T, Yaoita E, Kurihara H, Shimizu F, Sakai T, Kobayashi T, Ohshiro K, Kawachi H, Okada H, Suzuki H, Kinara I, Yamamoto T (2001) FAT is a component of glomerular slit diaphragms. Kidney Int 59:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Reiser J, Kriz W, Kuriyama R, Mundel P (1998) Nonuniform microtubular polarity established by CHO1/MKLP1 motor protein is necessary for process formation of podocytes. J Cell Biol 143:1961–1970

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Reiser J, Schwarz K, Sakai T, Kriz W, Mundel P (2001) Process formation of podocytes: morphogenetic activity of microtubules and regulation by protein serine/threonine phosphatase PP2A. Histochem Cell Biol 115:255–266

    PubMed  CAS  Google Scholar 

  • Kobayashi N, Gao SY, Chen J, Saito K, Miyawaki K, Li CY, Pan L, Saito S, Terashita T, Matsuda S (2004) Process formation of the renal glomerular podocyte: is there common molecular machinery for processes of podocytes and neurons? Anat Sci Int 79:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kodama A, Takaishi K, Nakano K, Nishioka H, Takai Y (1999) Involvement of Cdc42 small G protein in cell-cell adhesion, migration and morphology of MDCK cells. Oncogene 18:3996–4006

    Article  PubMed  CAS  Google Scholar 

  • Kuroda S, Fukata M, Nakagawa M, Kaibuchi K (1999) Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. Biochem Biophys Res Commun 262:1–6

    Article  PubMed  CAS  Google Scholar 

  • Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J (1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15:510–519

    PubMed  CAS  Google Scholar 

  • Mundel P, Reiser J, Zuniga Mejia Borja A, Pavenstadt H, Davidson GR, Kriz W, Zeller R (1997) Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res 236:248–258

    Article  PubMed  CAS  Google Scholar 

  • Oh J, Reiser J, Mundel P (2004) Dynamic (re)organization of the podocyte actin cytoskeleton in the nephrotic syndrome. Pediatr Nephrol 19:130–137

    Article  PubMed  Google Scholar 

  • Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    PubMed  CAS  Google Scholar 

  • Pelletier S, Julien C, Popoff MR, Lamarche-Vane N, Meloche S (2005) Cyclic AMP induces morphological changes of vascular smooth muscle cells by inhibiting a Rac-dependent signaling pathway. J Cell Physiol 204:412–422

    Article  PubMed  CAS  Google Scholar 

  • Qiao J, Huang F, Lum H (2003) PKA inhibits RhoA activation: a protection mechanism against endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 284:L972–L980

    PubMed  CAS  Google Scholar 

  • Reiser J, Kriz W, Krezler M, Mundel P (2000) The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 11:1–8

    PubMed  CAS  Google Scholar 

  • Ruotsalainen V, Patrakka J, Tissari P, Reponen P, Hess M, Kestila M, Holmberg C, Salonen R, Heikinheimo M, Wartiovaara J, Tryggvason K, Jalanko H (2000) Role of nephrin in cell junction formation in human nephrogenesis. Am J Pathol 157:1905–1916

    PubMed  CAS  Google Scholar 

  • Saleem MA, Ni L, Witherden I, Tryggvason K, Ruotsalainen V, Mundel P, Mathieson PW (2002) Co-localization of nephrin, podocin, and the actin cytoskeleton. Am J Pathol 161:1459–1466

    PubMed  CAS  Google Scholar 

  • Shibata S, Nagase M, Fujita T (2006) Fluvastatin ameliorates podocyte injury in proteinuric rats via modulation of excessive Rho signaling. J Am Soc Nephrol 17:754–764

    Article  PubMed  CAS  Google Scholar 

  • Sun GP, Kohno M, Guo P, Nagai Y, Miyata K, Fan YY, Kimura S, Kiyomoto H, Ohmori K, Li DT, Abe Y, Nishiyama A (2006) Involvements of Rho-kinase and TGF-beta pathways in aldosterone-induced renal injury. J Am Soc Nephrol 17:2193–2201

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Breslin JW, Zhu J, Yuan SY, Wu MH (2006) Rho and ROCK signaling in VEGF-induced microvascular endothelial hyperpermeability. Microcirculation 13:237–247

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–207

    PubMed  CAS  Google Scholar 

  • Takaishi K, Sasaki T, Kotani H, Nishioka H, Takai Y (1997) Regulation of cell-cell adhesion by Rac and Rho small G proteins in MDCK cells. J Cell Biol 139:1047–1059

    Article  PubMed  CAS  Google Scholar 

  • Tanoue T, Takeichi M (2004) Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact. J Cell Biol 165:517–528

    Article  PubMed  CAS  Google Scholar 

  • Togawa A, Miyoshi J, Ishizaki H, Tanaka M, Takakura A, Nishioka H, Yoshida H, Doi T, Mizoguchi A, Matsuura N, Niho Y, Nishimune Y, Nishikawa S, Takai Y (1999) Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIalpha. Oncogene 18:5373–5380

    Article  PubMed  CAS  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994

    Article  PubMed  CAS  Google Scholar 

  • Usui J, Kurihara H, Shu Y, Tomari S, Kanemoto K, Koyama A, Sakai T, Takahashi T, Nagata M (2003) Localization of intercellular adherens junction protein p120 catenin during podocyte differentiation. Anat Embryol 206:175–184

    PubMed  CAS  Google Scholar 

  • Wakino S, Kanda T, Hayashi K (2005) Rho/Rho kinase as a potential target for the treatment of renal disease. Drug News Perspect 18:639–643

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Baumgartner W, Adamson RH, Zeng M, Aktories K, Barth H, Wilde C, Curry FE, Drenckhahn D (2004a) Requirement of Rac activity for maintenance of capillary endothelial barrier properties. Am J Physiol Heart Circ Physiol 286:H394–H401

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Drenckhahn D, Adamson RH, Curry FE (2004b) Role of adhesion and contraction in Rac 1-regulated endothelial barrier function in vivo and in vitro. Am J Physiol Heart Circ Physiol 287:H704–H711

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Drenckhahn D, Adamson RH, Barth H, Curry FE (2004c) cAMP protects endothelial barrier functions by preventing Rac-1 inhibition. Am J Physiol Heart Circ Physiol 287:H2427–H2433

    Article  PubMed  CAS  Google Scholar 

  • Weed SA, Parsons JT (2001) Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20:6418–6434

    Article  PubMed  CAS  Google Scholar 

  • Wegener J, Hakvoort A, Galla HJ (2000) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853:115–124

    Article  PubMed  CAS  Google Scholar 

  • Welsch T, Endlich N, Kriz W, Endlich K (2001) CD2AP and p130Cas localize to different F-actin structures in podocytes. Am J Physiol Renal Physiol 281:F769–F777

    PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114:1343–1355

    PubMed  CAS  Google Scholar 

  • Yaoita E, Kurihara H, Yoshida Y, Inoue T, Matsuki A, Sakai T, Yamamoto T (2005) Role of Fat1 in cell-cell contact formation of podocytes in puromycin aminonucleoside nephrosis and neonatal kidney. Kidney Int 68:542–551

    Article  PubMed  CAS  Google Scholar 

  • Yuan SY (2002) Protein kinase signaling in the modulation of microvascular permeability. Vascul Pharmacol 39:213–223

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Betson M, Erasmus J, Zeikos K, Bailly M, Cramer LP, Braga VM (2005) Actin at cell-cell junctions is composed of two dynamic and functional populations. J Cell Sci 118:5549–5562

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Peter Mundel (Department of Medicine, Mount Sinai School of Medicine, New York, N.Y., USA) for kindly providing the murine podocyte cell line, Mitsubishi Pharma (Osaka, Japan) for generously providing Y-27632, and Mr. Masachika Shudoh (Integrated Center for Sciences, Ehime University) for his skillful support with the electron microscopy. The English in this document has been checked by at least two professional editors, both native speakers of English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Kobayashi.

Additional information

This study was supported in part by a grant-in-aid for scientific research from the Japanese Ministry for Education, Culture, Sports, Science, and Technology (to N. K., no. 14570015). S-Y.G. is a recipient of a grant awarded by the Japanese government to graduate students from foreign countries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Sy., Li, Cy., Shimokawa, T. et al. Rho-family small GTPases are involved in forskolin-induced cell-cell contact formation of renal glomerular podocytes in vitro. Cell Tissue Res 328, 391–400 (2007). https://doi.org/10.1007/s00441-006-0365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0365-3

Keywords

Navigation