Cell and Tissue Research

, Volume 328, Issue 2, pp 301–316 | Cite as

TBX3, the gene mutated in ulnar-mammary syndrome, promotes growth of mammary epithelial cells via repression of p19ARF, independently of p53

  • Natalia Platonova
  • Maddalena Scotti
  • Polina Babich
  • Gloria Bertoli
  • Elena Mento
  • Vasco Meneghini
  • Aliana Egeo
  • Ileana Zucchi
  • Giorgio R. Merlo
Regular Article

Abstract

TBX3, the gene mutated in ulnar-mammary syndrome (UMS), is involved in the production of a transcription factor of the T-box family, known to inhibit transcription from the p14ARF (p19ARF in mouse) promoter in fibroblasts and to contribute to cell immortalization. One of the main features of the UMS phenotype is the severe hypoplasia of the breast, associated with haploinsufficiency of the TBX3 gene product. In mice homozygous for the targeted disruption of Tbx3, the mammary glands (MGs) are nearly absent from early stages of embryogenesis, whereas in heterozygous adults, the MGs show reduced ductal branching. All these data strongly suggest a specific role of TBX3 in promoting the growth of mammary epithelial cells (MECs), although direct evidence of this is lacking. Here, we provide data showing the growth-promoting function of Tbx3 in several models of MECs, in association with its ability to repress the ARF promoter. However, no effect of Tbx3 on cell differentiation or apoptosis has been observed. The growth promoting function also entails the down-regulation of p21CIP1/WAF and an increase in cyclin D1 but is independent of p53 and Mdm2 cell-cycle regulatory proteins, as p53-null MECs show similar growth responses associated with the up- or down-regulation of Tbx3. This is the first direct evidence that the level of Tbx3 expression positively controls the proliferation of MECs via pathways alternative to Mdm2-p53.

Keywords

Tbx3 p19ARF p53 Mammary cells Proliferation Ulnar-mammary syndrome Cell culture (Mouse) 

References

  1. Ball R, Friis R, Schoenenberger C, Doppler W, Groner B (1988) Prolactin regulation of b-casein expression and of a cytosolic 120 kDa protein in a cloned mouse mammary epithelial cell. EMBO J 7:2089–2095PubMedGoogle Scholar
  2. Bamshad M, Lin R, Law D, Scott Watkins W, Krakowiak P, Moore M, Franceschini P, Lala R, Holmes L, Gebuhr T, Bruneau B, Schinzel A, Seidman J, Seidman C, Jorde L (1997) Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 16:311–315PubMedCrossRefGoogle Scholar
  3. Bamshad M, Le T, Watkins W, Dixon M, Kramer B, Roeder AD (1999) The spectrum of mutations in Tbx3. Am J Hum Genet 64:1550–1562PubMedCrossRefGoogle Scholar
  4. Basson C, Bachinsky D, Lin R, Levi T, Elkins M (1997) Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35PubMedCrossRefGoogle Scholar
  5. Braybrook C, Doudney K, Marcano A, Arnason A, Bjornsson A, Patton M, Goodfellow P, Moore G, Stainer P (2001) The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nat Genet 29:179–183PubMedCrossRefGoogle Scholar
  6. Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts.Science 277:831–834PubMedCrossRefGoogle Scholar
  7. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ (1995) Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–557PubMedCrossRefGoogle Scholar
  8. Brummelkamp T, Kortlever R, Lingbeek M, Trettel F, MacDonald M, Lohuizen M van, Bernards R (2002) TBX3, the gene mutated in ulnar-mammary syndrome, is a negative regulator of p19ARF. J Biol Chem 277:6567–6572PubMedCrossRefGoogle Scholar
  9. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, and Seidman JG (2001) A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106:709–721PubMedCrossRefGoogle Scholar
  10. Butz NV, Campbell CE, Gronostajski RM (2004) Differential target gene activation by TBX2 and TBX2VP16: evidence for activation domain-dependent modulation of gene target specificity. Gene 342:67–76PubMedCrossRefGoogle Scholar
  11. Carlson H, Ota S, Campbell C, Hurlin P (2001) A dominant repression domain in TBX3 mediates transcription repression and cell immortalization: relevance to mutations in TBX3 that cause ulnar-mammary syndrome. Hum Mol Genet 10:2403–2413PubMedCrossRefGoogle Scholar
  12. Carlson H, Ota S, Song Y, Chen Y, Hurlin P (2002) Tbx3 impinges on the p53 pathway to suppress apoptosis, facilitate cell transformation and block myogenic differentiation. Oncogene 21:3827–3835PubMedCrossRefGoogle Scholar
  13. Carnero A, Hudson JD, Price CM, Beach DH (2000) p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2:148–155PubMedCrossRefGoogle Scholar
  14. Carreira S, Dexter TJ, Yavuzer U, Easty DJ, Goding CR (1998) Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol Cell Biol 18:5099–5108PubMedGoogle Scholar
  15. Chapman D, Garvey N, Hancock S, Alexiou A, Agulnik S (1996) Expression of the T-box family genes, TBX1-TBX5 during early mouse development. Dev Dyn 206:379–390PubMedCrossRefGoogle Scholar
  16. Coletta RD, Jedlicka P, Gutierrez-Hartmann A, Ford HL (2004) Transcriptional control of the cell cycle in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 9:39–53PubMedCrossRefGoogle Scholar
  17. D’Amico M, Wu K, Fu M, Rao M, Albanese C, Russell RG, Lian H, Bregman D, White MA, Pestell RG (2004) The inhibitor of cyclin-dependent kinase 4a/alternative reading frame (INK4a/ARF) locus encoded proteins p16INK4a and p19ARF repress cyclin D1 transcription through distinct cis elements.Cancer Res 64:4122–4130PubMedCrossRefGoogle Scholar
  18. Daniel CW, Smith GH (1999) The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 4:3–8PubMedCrossRefGoogle Scholar
  19. Danielson K, Osborn C, Durban E, Butel J, Medina D (1984) Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc Natl Acad Sci USA 81:3756–3760PubMedCrossRefGoogle Scholar
  20. Datta A, Nag A, Raychaudhuri P (2002) Differential regulation of E2F1, DP1, and the E2F1/DP1 complex by ARF. Mol Cell Biol 22:8398–8408PubMedCrossRefGoogle Scholar
  21. Davenport T, Jerome-Majewska L, Papaioannou V (2003) Mammary gland, limb and yolk sac defects in mice lacking TBX3, the gene mutated in human ulnar mammary syndrome. Development 130:2263–2273PubMedCrossRefGoogle Scholar
  22. Docquier F, Farrar D, D’Arcy V, Chernukhin I, Robinson AF, Loukinov D, Vatolin S, Pack S, Mackay A, Harris RA, Dorricott H, O’Hare MJ, Lobanenkov V, Klenova E (2005) Heightened expression of CTCF in breast cancer cells is associated with resistance to apoptosis. Cancer Res 15:5112–5122CrossRefGoogle Scholar
  23. Dulbecco R, Okada S (1980) Differentiation and morphogenesis of mammary cells in vitro. Proc R Soc Lond [Biol] 208:399–408CrossRefGoogle Scholar
  24. Dulbecco R, Bologna M, Unger M (1979) Differentiation of a rat mammary cell line in vitro. Proc Natl Acad Sci USA 76:1256–1260PubMedCrossRefGoogle Scholar
  25. Dulbecco R, Bologna M, Unger M (1980) Control of differentiation of a mammary cell line by lipids. Proc Natl Acad Sci USA 77:1551–1555PubMedCrossRefGoogle Scholar
  26. Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1:639–649PubMedGoogle Scholar
  27. Govoni KE, Lee SK, Chadwick RB, Yu H, Kasukawa Y, Baylink DJ, Mohan S (2006) Whole genome microarray analysis of growth hormone induced gene expression in bone: T-box3, a novel transcription factor, regulates osteoblast proliferation. Am J Physiol Endocrinol Metab 291:E128–E136PubMedCrossRefGoogle Scholar
  28. Groner B (2002) Transcription factor regulation in mammary epithelial cells. Domest Anim Endocrinol 23:25–32PubMedCrossRefGoogle Scholar
  29. He ML, Wen L, Campbell CE, Wu JY, Rao Y (1999) Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc Natl Acad Sci USA 96:10212–10217PubMedCrossRefGoogle Scholar
  30. Hennighausen L, Robinson G (1998) Think globally, act locally: the making of a mouse mammary gland. Genes Dev 12:449–455PubMedGoogle Scholar
  31. Ito A, Asamoto M, Hokaiwado N, Takahashi S, Shirai T (2005) Tbx3 expression is related to apoptosis and cell proliferation in rat bladder both hyperplastic epithelial cells and carcinoma cells. Cancer Lett 219:105–112PubMedCrossRefGoogle Scholar
  32. Jacobs JJL, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM, Welsem T van, Vijver MJ van de, Koh EY, Daley GQ, Lohuizen M van (2000) Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nat Genet 26:291–299PubMedCrossRefGoogle Scholar
  33. Jerome L, Papaioannou V (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene TBX1. Nat Genet 27:286–291PubMedCrossRefGoogle Scholar
  34. Jerome-Majewska L, Jenkins G, Ernstoff E, Zindy F, Sherr C, Papaioannou V (2005) Tbx3, the ulnar-mammary syndrome gene, and Tbx2 interact in mammary gland development through a p19ARF/p53-independent pathway. Dev Dyn 234:922–933PubMedCrossRefGoogle Scholar
  35. Jerry DJ, Kuperwasser C, Downing SR, Pinkas J, He C, Dickinson ES, Marconi S, Naber SP (1998) Delayed involution of the mammary epithelium in BALB/c-p53 null mice. Oncogene 17:2305–2312PubMedCrossRefGoogle Scholar
  36. Kashuba E, Mattsson K, Klein G, Szekely L (2003) p14ARF induces the relocation of HDM2 and p53 to extranucleolar sites that are targeted by PML bodies and proteasomes. Mol Cancer 5:2–18Google Scholar
  37. Koopman G, Reutelingsperger CPM, Kuijten GAM, Keelmen RMJ, Pals ST, Oers MHJ van (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420PubMedGoogle Scholar
  38. Korgaonkar C, Zhao L, Modestou M, Quelle DE (2002) ARF function does not require p53 stabilization or Mdm2 Relocalization. Mol Cell Biol 22:196–206PubMedCrossRefGoogle Scholar
  39. Li M, Newbury-Ecob R, Terret J, Wilson D, Curtis A (1997) Holt-Oram syndrome is caused by mutations in TBX5, a member of the brachyury gene family. Nat Genet 15:21–29PubMedCrossRefGoogle Scholar
  40. Lindsay E, Vitelli F, Su H, Morishima M (2001) TBX1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101PubMedCrossRefGoogle Scholar
  41. Lingbeek M, Jacobs J, Lohuizen M van (2002) The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site. J Biol Chem 277:26120–26127PubMedCrossRefGoogle Scholar
  42. Marcano ACB, Doudney K, Braybrook C, Squires R, Patton MA, Lees MM, Richieri-Costa A, Lidral AC, Murray JC, Moore GE, Stanier P (2004) TBX22 mutations are a frequent cause of cleft palate. J Med Genet 41:68–74PubMedCrossRefGoogle Scholar
  43. Medina D, Kittrell FS (2003) p53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. Cancer Res 63:6140–6143PubMedGoogle Scholar
  44. Meneghini V, Odent S, Platonova N, Egeo A, Merlo GR (2006) Novel TBX3 mutation data in families with ulnar-mammary syndrome indicate a genotype-phenotype relationship: mutations that do not disrupt the T-domain are associated with less severe limb defects. Eur J Med Genet 49:151–158PubMedCrossRefGoogle Scholar
  45. Merlo GR, Venesio T, Taverna D, Marte B, Callahan R, Hynes N (1994) Growth suppression of normal mammary epithelial cells by wild-type p53. Oncogene 9:443–453PubMedGoogle Scholar
  46. Merlo G, Fiore L, Basolo F, Duboc L, Hynes N (1995) p53-dependent and p53-independent apoptosis of mammary epithelial cells reveals a role for EGF and insulin as survival factors. J Cell Biol 128:1185–1196PubMedCrossRefGoogle Scholar
  47. Merlo G, Graus-Porta D, Cella N, Marte B, Taverna D, Hynes N (1996) Growth, differentiation and survival of HC11 mammary epithelial cells: diverse effects of receptor tyrosine kinase-activating growth factors. Eur J Cell Biol 70:97–105PubMedCrossRefGoogle Scholar
  48. Merscher S, Funke B, Epstein J, Heyer J, Puech A, Lu M (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629PubMedCrossRefGoogle Scholar
  49. Momand J, Zambetti GP (1997) Mdm-2: “big brother” of p53. J Cell Biochem 64:343–352PubMedCrossRefGoogle Scholar
  50. Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18:3587–3596PubMedCrossRefGoogle Scholar
  51. Moskowitz IP, Pizard A, Patel VV, Bruneau BG, Kim JB, Kupershmidt S, Roden D, Berul CI, Seidman CE, Seidman JG (2004) The T-box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 131:4107–4116PubMedCrossRefGoogle Scholar
  52. Naiche L, Papaioannou V (2003) Loss of TBX4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130:2681–2693PubMedCrossRefGoogle Scholar
  53. Normand G, Hemmati PG, Verdoodt B, Haefen C von, Wendt J, Guner D, May E, Dorken B, Daniel PT (2005) p14ARF induces G2 cell cycle arrest in p53- and p21-deficient cells by down-regulating p34cdc2 kinase activity. J Biol Chem 280:7118–7130PubMedCrossRefGoogle Scholar
  54. Packham E, Brook J (2003) T-box genes in human disorders. Hum Mol Genet 12:R37–R44PubMedCrossRefGoogle Scholar
  55. Papaioannou V, Silver L (1998) The T-box gene family. BioEssays 20:9–19PubMedCrossRefGoogle Scholar
  56. Paxton C, Zhao H, Chin Y, Langner K, Reecy J (2002) Murine TBX2 contains domains that activate and repress gene transcription. Gene 283:117–124PubMedCrossRefGoogle Scholar
  57. Prince S, Carreira S, Vance KW, Abrahams A, Goding CR (2004) TBX2 directly represses the expression of the p21WAF1 cyclin-dependent kinase inhibitor. Cancer Res 64:1669–1674PubMedCrossRefGoogle Scholar
  58. Resnitzky D, Reed S (1995) Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol 15:3463–3469PubMedGoogle Scholar
  59. Rowley M, Grothey E, Couch FJ (2004) The role of TBX2 and TBX3 in mammary development and tumorigenesis. J Mammary Gland Biol Neoplasia 9:109–118PubMedCrossRefGoogle Scholar
  60. Sherr CJ (1998) Tumor surveillance via the ARF-p53 pathway. Genes Dev 12:2984–2991PubMedGoogle Scholar
  61. Smith J (1999) T-box genes: what they do and how they do it. Trends Genet 15:154–158PubMedCrossRefGoogle Scholar
  62. Steinman HA, Burstein E, Lengner C, Gosselin J, Pihan G, Duckett CS, Jones SN (2004) An alternative splice form of mdm2 induces p53-independent cell growth and tumorigenesis. J Biol Chem 279:4877–4886PubMedCrossRefGoogle Scholar
  63. Sugimoto M, Kuo ML, Roussel MF, Sherr CJ (2003) Nucleolar ARF tumor suppressor inhibits ribosomal RNA processing. Mol Cell 11:415–424PubMedCrossRefGoogle Scholar
  64. Tada M, Smith J (2001) T-targets: clues to understanding the functions of T-box proteins. Dev Growth Differ 43:1–11PubMedCrossRefGoogle Scholar
  65. Veltmaat J, Maileux A, Thiery J, Bellusci S (2003) Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 71:1–17PubMedCrossRefGoogle Scholar
  66. Visvader JE, Lindeman GJ (2003) Transcriptional regulators in mammary gland development and cancer. Int J Biochem Cell Biol 35:1034–1051PubMedCrossRefGoogle Scholar
  67. Wang Y, Blandino G, Givol D (1999) Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 18:2643–2649PubMedCrossRefGoogle Scholar
  68. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar ARF sequesters Mdm2 and activates p53. Nat Cell Biol 1:20–26PubMedCrossRefGoogle Scholar
  69. Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF, Sherr CJ, Zambetti GP (2000) p53-Independent functions of the p19 (ARF) tumor suppressor. Genes Dev 14:2358–2365PubMedCrossRefGoogle Scholar
  70. Weinstat-Saslow D, Merino M, Manrow R, Lawrence J, Bluth R, Wittenbel K, Simpson J, Page D, Steeg P (1995) Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1:1257–1259PubMedCrossRefGoogle Scholar
  71. Wilson V, Conlon FL (2002) The T-box family. Genome Biol 3:3008.1–3008.7CrossRefGoogle Scholar
  72. Yarbrough WG, Bessho M, Zanation A, Bisi JE, Xiong Y (2002) Human tumor suppressor ARF impedes S-phase progression independent of p53. Cancer Res 62:1171–1177PubMedGoogle Scholar
  73. Yi Y, Shepard A, Kittrell F, Mulac-Jericevic B, Medina D, Said TK (2004) p19ARF determines the balance between normal cell proliferation rate and apoptosis during mammary gland development. Mol Biol Cell 15:2302–2311PubMedCrossRefGoogle Scholar
  74. Zucchi I, Montagna C, Susani L, Vezzoni P, Dulbecco R (1998) The rat gene homologous to the human gene 9–27 is involved in the development of the mammary gland. Proc Natl Acad Sci USA 95:1079–1084PubMedCrossRefGoogle Scholar
  75. Zucchi I, Montagna C, Susani L, Montesano R, Affer M, Zanotti S, Redolfi E, Vezzoni P, Dulbecco R (1999) Genetic dissection of dome formation in a mammary cell line: identification of two genes with opposing action. Proc Natl Acad Sci USA 98:13766–13770CrossRefGoogle Scholar
  76. Zucchi I, Bini L, Albani D, Valaperta R, Liberatori S, Raggiaschi R, Montagna C, Susani L, Barbieri O, Pallini V, Vezzoni P, Dulbecco R (2002) Dome formation in cell cultures as expression of an early stage of lactogenic differentiation of the mammary gland. Proc Natl Acad Sci USA 99:8660–8665PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Natalia Platonova
    • 1
  • Maddalena Scotti
    • 2
  • Polina Babich
    • 1
    • 3
  • Gloria Bertoli
    • 2
  • Elena Mento
    • 2
  • Vasco Meneghini
    • 1
  • Aliana Egeo
    • 1
  • Ileana Zucchi
    • 2
  • Giorgio R. Merlo
    • 1
  1. 1.Dulbecco Telethon Institute/CNR-ITBMilanoItaly
  2. 2.Istituto Tecnologie Biomediche CNRMilanoItaly
  3. 3.Research Institute of Experimental MedicineSt. PetersburgRussia

Personalised recommendations