Skip to main content

Distribution and characterization of nitric oxide synthase in the nervous system of Triatoma infestans (Insecta: Heteroptera)

Abstract

The biochemical characterization of nitric oxide synthase (NOS) and its distribution in the central nervous system (CNS) were studied in the heteropteran bug Triatoma infestans. NOS-like immunoreactivity was found in the brain, subesophageal ganglion, and thoracic ganglia by using immunocytochemistry. In the protocerebrum, NOS-immunoreactive (IR) somata were detected in the anterior, lateral, and posterior soma rinds. In the optic lobe, numerous immunostained somata were observed at the level of the first optic chiasma, around the lobula, and in the proximal optic lobe. In the deutocerebrum, NOS-IR perikarya were mainly observed in the lateral soma rind, surrounding the sensory glomeruli, and a few cell bodies were seen in association with the antennal mechanosensory and motor neuropil. No immunostaining could be detected in the antennal nerve. The subesophageal and prothoracic ganglia contained scattered immunostained cell bodies. NOS-IR somata were present in all the neuromeres of the posterior ganglion. Western blotting showed that a universal NOS antiserum recognized a band at 134 kDa, in agreement with the expected molecular weight of the protein. Analysis of the kinetics of nitric oxide production revealed a fully active enzyme in tissue samples of the CNS of T. infestans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    PubMed  Article  CAS  Google Scholar 

  2. Bicker G (2001) Sources and targets of nitric oxide signalling in insect nervous systems. Cell Tissue Res 303:137–146

    PubMed  Article  CAS  Google Scholar 

  3. Bicker G, Hähnlein I (1995) NADPH-diaphorase expression in neurones and glial cells of the locust brain. Neuroreport 6:325–328

    PubMed  Article  CAS  Google Scholar 

  4. Bicker G, Schmachtenberg O (1997) Cytochemical evidence for nitric oxide/cyclic GMP signal transmission in the visual system of the locust. Eur J Neurosc 9:189–193

    Article  CAS  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Article  CAS  Google Scholar 

  6. Braman RS, Hendrix SA (1989) Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal Chem 61:2715–2718

    PubMed  Article  CAS  Google Scholar 

  7. Brenman JE, Xia H, Chao DS, Black SM, Bredt DS (1997) Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev Neurosci 19:224–231

    PubMed  CAS  Google Scholar 

  8. Broholm H, Rubin I, Kruse A, Braedenstrup O, Schmidt K, Skriver EB, Lauritzen M (2003) Nitric oxide synthase expression and enzymatic activity in human brain tumors. Clin Neuropathol 22:273–281

    PubMed  CAS  Google Scholar 

  9. Davies SA (2000) Nitric oxide signalling in insects. Insect Biochem Mol Biol 30:1123–1138

    PubMed  Article  CAS  Google Scholar 

  10. Di Luciano V (1981) Morphology of the stridulatory groove of Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 18:24–32

    Google Scholar 

  11. Elphick MR, Jones IW (1998) Localization of soluble guanylyl cyclase α-subunit in identified insect neurons. Brain Res 800:170–174

    Article  Google Scholar 

  12. Elphick MR, Rayne RC, Riveros-Moreno V, Moncada S, O’Shea M (1995) Nitric oxide synthesis in locust olfactory interneurons. J Exp Biol 198:821–829

    PubMed  CAS  Google Scholar 

  13. Elphick MR, Williams L, O’Shea M (1996) New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision. J Exp Biol 199:2395–2407

    PubMed  CAS  Google Scholar 

  14. Feelisch M, Noack E (1987) Nitric oxide (NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur J Pharmacol 142:465–469

    PubMed  Article  CAS  Google Scholar 

  15. Gibson NJ, Nighorn A (2000) Expression of nitric oxide synthase and soluble guanylyl cyclase in the developing olfactory system of Manduca sexta. J Comp Neurol 422:197–205

    Article  Google Scholar 

  16. Guerenstein PG, Guerin PM (2001) Olfactory and behavioural responses of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts. J Exp Biol 204:585–597

    PubMed  CAS  Google Scholar 

  17. Hsu SM, Raind O, Fanger H (1981) Use of avidin biotin peroxidase complex (ABC) in immunoperoxidase technique. A comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  18. Imamura M, Yang J, Yamakawa M (2002) cDNA cloning, characterization and gene expression of nitric oxide synthase from the silkworm, Bombyx mori. Insect Mol Biol 11:257–265

    PubMed  Article  CAS  Google Scholar 

  19. Insausti TC (1994) Nervous system of Triatoma infestans. J Morphol 321:1–17

    Google Scholar 

  20. Insausti TC, Lazzari CR (2000) The central projection of cephalic mechanosensory axons in the haematophagous bug Triatoma infestans. Mem Inst Oswaldo Cruz 95:381–388

    PubMed  CAS  Google Scholar 

  21. Kurylas AE, Ott SR, SchachtnerJ, Elphick MR, Williams L, Homberg U (2005) Localization of nitric oxide synthase in the central complex and surrounding midbrain neuropils of the locust Schistocerca gregaria. J Comp Neurol 484:206–223

    PubMed  Article  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    PubMed  Article  CAS  Google Scholar 

  23. Luckhart S, Rosenberg R (1999) Gene structure and polymorphism of an invertebrate nitric oxide synthase gene. Gene 232:25–34

    PubMed  Article  CAS  Google Scholar 

  24. Manrique G, Lazzari CR (1994) Sexual behaviour and stridulation during mating in Triatoma infestans (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz 89:629–633

    PubMed  CAS  Article  Google Scholar 

  25. Müller U (1994) Ca2+/calmodulinin dependent nitric oxide synthase in Apis mellifera and Drosophila melanogaster. Eur J Neurosc 6:1362–1370

    Article  Google Scholar 

  26. Müller U (1997) The nitric oxide system in insects. Prog Neurobiol 51:363–381

    PubMed  Article  Google Scholar 

  27. Nighorn A, Gibson NJ, Rivers DM, Hildebrand JG, Morton DB (1998) The nitric oxide-cGMP pathway may mediate communication between sensory afferents and projection neurons in the antennal lobe of Manduca sexta. J Neurosci 18:7244–7255

    PubMed  CAS  Google Scholar 

  28. Ott SR, Burrows M (1998) Nitric oxide synthase in the thoracic ganglia of the locust: distribution in the neuropils and morphology of neurones. J Comp Neurol 305:217–230

    Article  Google Scholar 

  29. Regulski M, Tully T (1995) Molecular and biochemical characterization of dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase. Proc Natl Acad Sci USA 92:9072–9076

    PubMed  Article  CAS  Google Scholar 

  30. Reisenman CE, Insausti TC, Lazzari CR (2002) Light-induced and circadian changes in the compound eye of the haematophagous bug Triatoma infestans (Hemiptera: Reduviidae). J Exp Biol 225:201–210

    Google Scholar 

  31. Ribeiro JMC, Nussenzveig RH (1993) Nitric oxide synthase activity from a hematophagous insect salivary gland. FEBS Lett 330:165–168

    PubMed  Article  CAS  Google Scholar 

  32. Seidel C, Bicker G (1997) Colocalization of NADPH-diaphorase and GABA-immunoreactivity in the locust olfactory and visual system. Brain Res 769:273–280

    PubMed  Article  CAS  Google Scholar 

  33. Settembrini BP (1984) Circadian rhythms of locomotor activity in Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 21:204–212

    PubMed  CAS  Google Scholar 

  34. Settembrini BP, Villar MJ (1999) Proctolin in the brain and ganglia of Triatoma infestans. J Morphol 240:39–47

    Article  CAS  Google Scholar 

  35. Settembrini BP, Villar MJ (2004) Distribution of serotonin in the central nervous system of the blood feeding heteropteran, Triatoma infestans (Heteroptera: Reduviidae). J Morphol 260:21–31

    PubMed  Article  Google Scholar 

  36. Settembrini BP, Coronel MF, Nowicki S, De Pasquale D, Villar MJ (2005) Distribución y caracterización de la sintetasa del óxido nítrico en el sistema nervioso central de Triatoma infestans. Resúmenes del VI Congreso Argentino de Entomología, San Miguel de Tucumán, p 316

  37. Shah S, Hyde DR (1995) Two Drosophila genes that encode the α- and β-subunits of the brain soluble guanylyl cyclase. J Biol Chem 270:15368–15376

    PubMed  Article  CAS  Google Scholar 

  38. Shu S, Ju G, Fan I (1988) The glucose oxidase method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171

    PubMed  Article  CAS  Google Scholar 

  39. Stasiv Y, Regulski M, Kuzin B, Tully T, Enikolopov G (2001) The Drosophila nitric-oxide synthase gene (dNOS) encodes a family of proteins that can modulate NOS activity by acting as dominant negative regulators. J Biol Chem 276:42241–42251

    PubMed  Article  CAS  Google Scholar 

  40. Stürmer K, Bauman O, Walz B (1995) Actin-dependent light induced translocation of mitochondria and ER cisternae in the photoreceptor cells of the locust Schistocerca gregaria. J Cell Sci 108:2273–2283

    PubMed  Google Scholar 

  41. Taneja J, Guerrin PM (1995) Oriented responses of the triatomine bugs Rhodnius prolixus and Triatoma infestans to vertebrate odours on a servosphere. J Comp Physiol [A] 176:455–464

    Google Scholar 

  42. Villar MJ, Settembrini BP, Hökfelt T, Tramezzani JH (1994) NOS is present in the brain of Triatoma infestans and is colocalyzed with CCK. Neuroreport 6:81–84

    PubMed  Article  CAS  Google Scholar 

  43. Wenzel B, Kunst M, Günther C, Ganter GK, Lakes-Harlan R, Elsner N, Heinrich R (2005) Nitric oxide/cyclic guanosine monophosphate signaling in the central complex of the grasshopper brain inhibits singing behavior. J Comp Neurol 488:129–139

    PubMed  Article  CAS  Google Scholar 

  44. WHO (2002) Special program for research and training in tropical diseases report. TDR Strategic Direction: Chagas’ disease. WHO, Geneva

    Google Scholar 

  45. Yuda M, Hirai M, Miura K, Matsumara H, Ando K, Chinzei Y (1996) CDNA cloning, expression and characterization of nitric-oxide synthase from the salivary glands of the blood-sucking insect Rhodnius prolixus. Eur J Biochem 242:807–812

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to D. Canale and A. Stariolo (Center for the Control of Chagas’ disease) for providing the insects, to G. Ruffolo and S. Ruffolo for technical assistance, and P. Jansma (Arizona Research Laboratories, Division of Neurobiology, University of Arizona) for expert help with the confocal microscope. The assistance of C. Collmann and M. Kaneko is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Beatriz P. Settembrini.

Additional information

This work was funded by the Facultad de Ciencias Biomédicas. Universidad Austral. A.J.N. is supported by the NIH-NIDCD (DC04292). Part of this work was performed at the Arizona Research Laboratories, Division of Neurobiology (Tucson, Arizon, USA) with the support of a Fulbright Research Award to B.P.S.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Settembrini, B.P., Coronel, M.F., Nowicki, S. et al. Distribution and characterization of nitric oxide synthase in the nervous system of Triatoma infestans (Insecta: Heteroptera). Cell Tissue Res 328, 421–430 (2007). https://doi.org/10.1007/s00441-006-0359-1

Download citation

Keywords

  • Brain
  • Subesophageal ganglion
  • Thoracic ganglia
  • NOS
  • NO production
  • (Insecta) Triatoma infestans