Skip to main content

Advertisement

Log in

Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berg T, Leth-Larsen R, Holmskov U, Hojrup P (2000) Structural characterization of human proteinosis surfactant protein A. Biochim Biophys Acta 1543:159–173

    PubMed  CAS  Google Scholar 

  • Capelli A, Cerutti CG, Lusuardi M, Donner CF (1997) Identification of human pulmonary alkaline phosphatase isozymes. Am J Respir Crit Care Med 155:1448–1452

    PubMed  CAS  Google Scholar 

  • Chung JH, Park MS, Kim YS, Chang J, Kim JH, Kim SH, Kim SK (2005) Usefulness of bone metabolic markers in the diagnosis of bone metastasis from lung cancer. Yonsei Med J 46:388–393

    Article  PubMed  Google Scholar 

  • Cobben NA, Drent M, Lacobs JA, Schmitz MP, Mulder PG, Henderson RF, Wouters EF, Dieijen-Visser MP van (1999) Relationship between enzymatic markers of pulmonary cell damage and cellular profile: a study in bronchoalveolar lavage fluid. Exp Lung Res 25:99–111

    Article  PubMed  CAS  Google Scholar 

  • Edelson JD, Shannon JM, Mason RJ (1988) Alkaline phosphatase: a marker of alveolar type II cell differentiation. Am Rev Respir Dis 138:1268–1275

    PubMed  CAS  Google Scholar 

  • Eliakim R, Goetz GS, Rubio S, Chailley-Heu B, Shao JS, Ducroc R, Alpers DH (1997) Isolation and characterization of surfactant-like particles in rat and human colon. Am J Physiol Gastrointest Liver Physiol 272:425–434

    Google Scholar 

  • Fehrenbach H (2001) Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res 2:33–46

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach H, Kasper M, Tschernig T, Pan T, Schuh D, Shannon JM, Muller M, Mason RJ (1999) Keratinocyte growth factor-induced hyperplasia of rat alveolar type II cells in vivo is resolved by differentiation into type I cells and by apoptosis. Eur Respir J 14:534–544

    Article  PubMed  CAS  Google Scholar 

  • Fishman WH (1990) Alkaline phosphatase isozymes: recent progress. Clin Biochem 23:99–104

    Article  PubMed  CAS  Google Scholar 

  • Fujimori-Arai Y, Koyama I, Hirano K, Sakagishi Y, Komoda T (1991) Purification and partial characterization of intestinal-like alkaline phosphatase in rabbit kidney. Arch Biochem Biophys 284:320–325

    Article  PubMed  CAS  Google Scholar 

  • Gazdar AF, Minna JD (1997) Cigarettes, sex, and lung adenocarcinoma. J Natl Cancer Int 89:1563–1565

    Article  CAS  Google Scholar 

  • Goldstein DJ, Rogers C, Harris H (1982) A search for trace expression of placental-like alkaline phosphatase in non-malignant human tissues: demonstration of its occurrence in lung, cervix, testis and thymus. Clin Chim Acta 125:63–75

    Article  PubMed  CAS  Google Scholar 

  • Grigoriadis AE, Petkovich PM, Rosenthal EE, Heerche JN (1986) Modulation by retinoic acid of 1,25-dihydroxyvitamin D3 effects on alkaline phosphatase activity and parathyroid hormone responsiveness in an osteoblast-like osteosarcoma cell line. Endocrinology 119:932–939

    Article  PubMed  CAS  Google Scholar 

  • Gross NJ, Narine KR (1989a) Surfactant subtype in mice: characterization and quantitation. J Appl Physiol 66:342–349

    Article  CAS  Google Scholar 

  • Gross NJ, Narine KR (1989b) Surfactant subtype in mice: metabolic relationships and conversion in vitro. J Appl Physiol 67:414–421

    CAS  Google Scholar 

  • Haneji T, Kurihara N, Ikeda K, Kumegawa M (1983) 1 alpha, 25-Dihydroxyvitamin D3 and analogues of vitamin D3 induce alkaline phosphatase activity in osteoblastic cells derived from newborn mouse calvaria. J Biochem 94:1127–1132

    PubMed  CAS  Google Scholar 

  • Harada T, Koyama I, Shimoi A, Alpers DH, Komoda T (2002) Identification of pulmonary surfactant that bears intestinal-type and tissue-nonspecific-type alkaline phosphatase in endotoxin-induced rat bronchioalveolar fluid. Cell Tissue Res 307:69–77

    Article  PubMed  CAS  Google Scholar 

  • Honda Y (1996) Clinical significance of serum surfactant proteins A and D in idiopathic interstitial pneumonia. Nihon Kyobu Shikkan Gakkai Zasshi 34:181–185

    PubMed  Google Scholar 

  • Hoshino T, Kumasaka K, Kawano K, Koyama I, Arai-Fujimori Y, Yamagishi F, Sakagishi Y, Komoda T (1993) Abnormal alkaline phosphatase of hepatic type in cerebrospinal fluid of a patient with intracranial metastasis from lung cancer. J Clin Pathol 46:1059–1061

    PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. Am J Clin Pathol 75:816–821

    PubMed  CAS  Google Scholar 

  • Ikegami M, Korfhagen TR, Whitsett JA, Bruno MD, Wert SE, Wada K, Jobe AH (1998) Characteristics of surfactant from SP-A-deficient mice. Am J Physiol 275:L247–L254

    PubMed  CAS  Google Scholar 

  • Jeng YJ, Watson CS, Thomas ML (1994) Identification of vitamin D-stimulated alkaline phosphatase in IEC-6 cells, a rat small intestine crypt cell line. Exp Cell Res 212:338–343

    Article  PubMed  CAS  Google Scholar 

  • Korfhagen TR, Bruno MD, Ross GF, Huelsman KM, Ikegami M, Jobe AH, Wert SE, Stripp BR, Morris RE, Glasser SW, Bachurski CJ, Iwamoto HS, Whitsett JA (1996) Altered surfactant function and structure in SP-A gene targeted mice. Proc Natl Acad Sci USA 93:9594–9599

    Article  PubMed  CAS  Google Scholar 

  • Komoda T, Koyama I, Nagata A, Sakagishi Y, DeSchryver-Kecskemeti K, Alpers DH (1986) Ontogenic and phylogenic studies of intestinal, hepatic, and placental alkaline phosphatases. Evidence that intestinal alkaline phosphatase is a late evolutionary development. Gastroenterology 91:277–286

    PubMed  CAS  Google Scholar 

  • Koyama I, Fujimori-Arai Y, Hirota N, Sakai T, Sakagishi Y, Komoda T (1991) Liver-like alkaline phosphatase in the tissue-unspecific type enzyme found in rabbit organs. Biochim Biophys Acta 1080:165–172

    PubMed  CAS  Google Scholar 

  • Krause MF, Wiemann T, Reisner A, Orlowska-Volk M, Kohler H, Ankermann T (2005) Surfactant reduces extravascular lung water and invasion of polymorphonuclear leukocytes into the lung in a piglet model of airway lavage. Pulm Pharmacol Ther 18:129–139

    Article  PubMed  CAS  Google Scholar 

  • Kuroishi T, Hirose K, Tominaga S, Ogawa H, Tajima K (1992) Prediction of future cancer mortality in Japan. Jpn J Clin Oncol 22:365–369

    PubMed  CAS  Google Scholar 

  • Levi F, Lucchini F, Negri E, La Vecchia C (1999) World wide patterns of cancer mortality, 1990–1994. Eur J Cancer Prev 8:381–400

    Article  PubMed  CAS  Google Scholar 

  • Madsen J, Tornoe I, Nielsen O, Koch C, Steinhilber W, Holmskov U (2003) Expression and localization of lung surfactant protein A in human tissues. Am J Respir Cell Mol Biol 29:591–597

    Article  PubMed  CAS  Google Scholar 

  • Meben C (1975) Fine structural localization of alkaline phosphatase in the granular pneumocytes of hamster lung. Histochemistry 43:367–372

    Article  Google Scholar 

  • Miura M, Matsuzaki H, Bailyes EM, Koyama I, Sakagishi Y, Sekine T, Komoda T (1989) Differences between human liver and bone-type alkaline phosphatases. Clin Chim Acta 180:177–187

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Sakagishi Y, Hata K, Komoda T (1994) Differences between the sugar moieties of liver- and bone-type alkaline phosphatase: a re-evaluation. Ann Clin Biochem 31:25–30

    PubMed  CAS  Google Scholar 

  • Miyanaga M, Sugimoto H, Komoda T, Nosjean O, Honma K, Nemoto K, Sato T (1996) A variant alkaline phosphatase detected in a patient with lung cancer. Enzyme Protein 49:313–320

    PubMed  CAS  Google Scholar 

  • Nosjean O, Koyama I, Goseki M, Roux B, Komoda T (1997) Human tissue non-specifoic alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects. Biochem J 321:297–303

    PubMed  CAS  Google Scholar 

  • Nouwen EJ, Pollet DK, Eerdekens MW, Hendrix PG, Briers TW, De Broe ME (1986) Immunohistochemical localization of placental alkaline phosphatase, carcinoembryonic antigen, and cancer antigen 125 in normal and neoplastic human lung. Cancer Res 46:866–876

    PubMed  CAS  Google Scholar 

  • Nouwen EJ, Buyssens N, De Broe ME (1990) Heat-stable alkaline phosphatase as marker for human and monkey type-I pneumocytes. Cell Tissue Res 260:321–335

    Article  PubMed  CAS  Google Scholar 

  • Ochs M, Johnen G, Muller KM, Wahlers T, Hawgood S, Richter J, Brasch F (2002) Intracellular and intraalveolar localization of surfactant protein A (SP-A) in the parenchymal region of the human lung. Am J Respir Cell Mol Biol 26:91–98

    PubMed  CAS  Google Scholar 

  • Phelps DS, Umstead TM, Mejia M, Carrillo G, Pardo A, Selman M (2004) Increased surfactant protein-A levels in patients with newly diagnosed idiopathic pulmonary fibrosis. Chest 125:617–625

    Article  PubMed  CAS  Google Scholar 

  • Travis WD, Luvin J, Ries L, Devesa S (1996) United States lung carcinoma incidence trends: declining for most histologic types among males, increasing among females. Cancer 15:2464–2470

    Article  Google Scholar 

  • Uhal BD (1997) Cell cycle kinetics in the alveolar epithelium. Am J Physiol 272:L1031–L1045

    PubMed  CAS  Google Scholar 

  • Veldhuizen RA, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408:90–108

    PubMed  CAS  Google Scholar 

  • Wali A, Dhall K, Sanyal SN, Juneja R, Majumdar S (1990) Sequential isolation and biochemical analysis of pulmonary surfactant from human lung homogenate. Biochem Int 20:869–877

    PubMed  CAS  Google Scholar 

  • Wright JR (1997) Immunomodulatory functions of surfactant. Physiol Rev 77:931–962

    PubMed  CAS  Google Scholar 

  • Wright JR, Clements JA (1987) Metabolism and turnover of lung surfactant. Am Rev Respir Dis 135:426–444

    Google Scholar 

  • Yokomura K, Suda T, Sasaki S, Inui N, Chida K, Nakamura H (2003) Increased expression of the 25-hydroxyvitamin D(3)-1alpha-hydroxylase gene in alveolar macrophages of patients with lung cancer. J Clin Endocrinol Metab 88:5704–5709

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Kohei Yokoi and Dr. Yasuo Koyama for many insightful discussions during the course of this work. The authors also thank Masaru Tsumuraya and Etsuko Yaguchi for many helpful supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozomi Iino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iino, N., Matsunaga, T., Harada, T. et al. Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue. Cell Tissue Res 328, 355–363 (2007). https://doi.org/10.1007/s00441-006-0343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0343-9

Keywords

Navigation