Skip to main content
Log in

Serotonin 5-HT3 receptors in the central nervous system

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The 5-HT3 receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT3 receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher cortical areas such as the amygdala, hippocampus, and cortex. On the subcellular level, both presynaptic and postsynaptic 5-HT3 receptors can be found. Presynaptic 5-HT3 receptors are involved in mediating or modulating neurotransmitter release. Postsynaptic 5-HT3 receptors are preferentially expressed on interneurons. In view of this specific expression pattern and of the well-established role of 5-HT as a neurotransmitter shaping development, we speculate that 5-HT3 receptors play a role in the formation and function of cortical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike N, Moorhouse AJ (2003) Techniques: applications of the nerve-bouton preparation in neuropharmacology. Trends Pharmacol Sci 24:44–47

    Article  PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten HG, Grozdanovic Z (2000) Anatomy of central serotoninergic projection systems. In: Baumgarten HC, Gothert M (eds) Serotoninergic neurons and 5-HT receptors in the CNS. Springer, Berlin Heidelberg New York, pp 41–89

    Google Scholar 

  • Blandina P, Goldfarb J, Green JP (1988) Activation of a 5-HT3 receptor releases dopamine from rat striatal slice. Eur J Pharmacol 155:349–350

    Article  PubMed  CAS  Google Scholar 

  • Blandina P, Goldfarb J, Craddock-Royal B, Green JP (1989) Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum. J Pharmacol Exp Ther 251:803–809

    PubMed  CAS  Google Scholar 

  • Bradley PB, et al (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol 25:563–576

    Article  CAS  Google Scholar 

  • Bruss M, Barann M, Hayer-Zillgen M, Eucker T, Gothert M, Bonisch H (2000) Modified 5-HT3A receptor function by co-expression of alternatively spliced human 5-HT3A receptor isoforms. Naunyn-Schmiedebergs Arch Pharmacol 362:392–401

    Article  PubMed  CAS  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–951

    Article  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden D, Gomez J (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 9:496–507

    Article  PubMed  Google Scholar 

  • Costall B, Naylor RJ (2004) 5-HT3 receptors. Curr Drug Targets CNS Neurol Disord 3:27–37

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399

    Article  PubMed  CAS  Google Scholar 

  • Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397:359–363

    Article  PubMed  CAS  Google Scholar 

  • De Deurwaerdere P, Moison D, Navailles S, Porras G, Spampinato U (2005) Regionally and functionally distinct serotonin3 receptors control in vivo dopamine outflow in the rat nucleus accumbens. J Neurochem 94:140–149

    Article  PubMed  CAS  Google Scholar 

  • Derkach V, Surprenant A, North RA (1989) 5-HT3 receptors are membrane ion channels. Nature 339:706–709

    Article  PubMed  CAS  Google Scholar 

  • Dubin AE, Huvar R, D’Andrea MR, Pyati J, Zhu JY, Joy KC, Wilson SJ, Galindo JE, Glass CA, Luo L, Jackson MR, Lovenberg TW, Erlander MG (1999) The pharmacological and functional characteristics of the serotonin 5-HT3A receptor are specifically modified by a 5-HT3B receptor subunit. J Biol Chem 274:30799–30810

    Article  PubMed  CAS  Google Scholar 

  • Ferezou I, Cauli B, Hill EL, Rossier J, Hamel E, Lambolez B (2002) 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J Neurosci 22:7389–7397

    PubMed  CAS  Google Scholar 

  • Fletcher S, Lindstrom JM, McKernan RM, Barnes NM (1998) Evidence that porcine native 5-HT3 receptors do not contain nicotinic acetylcholine receptor subunits. Neuropharmacology 37:397–399

    Article  PubMed  CAS  Google Scholar 

  • Fozard JR (1984) MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedenbergs Arch Pharmacol 326:36–44

    Article  CAS  Google Scholar 

  • Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptor. Br J Parmacol Chemother 12:323–328

    CAS  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Glaum SR, Brooks PA, Spyer KM, Miller RJ (1992) 5-Hydroxytryptamine-3 receptors modulate synaptic activity in the rat nucleus tractus solitarius in vitro. Brain Res 589:62–68

    Article  PubMed  CAS  Google Scholar 

  • Gulyas AI, Acsady L, Freund TF (1999) Structural basis of the cholinergic and serotonergic modulation of GABAergic neurons in the hippocampus. Neurochem Int 34:359–372

    Article  PubMed  CAS  Google Scholar 

  • Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331–343

    Article  PubMed  CAS  Google Scholar 

  • Hornung JP, Celio MR (1992) The selective innervation by serotoninergic axons of calbindin-containing interneurons in the neocortex and hippocampus of the marmoset. J Comp Neurol 320:457–467

    Article  PubMed  CAS  Google Scholar 

  • Janusonis S, Gluncic V, Rakic P (2004) Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J Neurosci 24:1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (2000) Microcolumns in the cerebral cortex. Proc Natl Acad Sci USA 97:5019–5021

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky AM, Gotow LF, McKinley DD, Piechan JL, Ruble CL, Mills CJ, Schellin KA, Slightom JL, Fitzgerald LR, Benjamin CW, Roberds SL (2003) A cluster of novel serotonin receptor 3-like genes on human chromosome 3. Gene 319:137–148

    Article  PubMed  CAS  Google Scholar 

  • Katsurabayashi S, Kubota H, Tokutomi N, Akaike N (2003) A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons. Neuropharmacology 44:1022–1030

    Article  PubMed  CAS  Google Scholar 

  • Kawa K (1994) Distribution and functional properties of 5-HT3 receptors in the rat hippocampal dentate gyrus: a patch-clamp study. J Neurophysiol 71:1935–1947

    PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748

    Article  PubMed  CAS  Google Scholar 

  • Koyama S, Matsumoto N, Kubo C, Akaike N (2000) Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdala neurons. J Physiol (Lond) 529:373–383

    Article  CAS  Google Scholar 

  • Koyama S, Matsumoto N, Murakami N, Kubo C, Nabekura J, Akaike N (2002) Role of presynaptic 5-HT1A and 5-HT3 receptors in modulation of synaptic GABA transmission in dissociated rat basolateral amygdala neurons. Life Sci 72:375–387

    Article  PubMed  CAS  Google Scholar 

  • Kriegler S, Sudweeks S, Yakel JL (1999a) The nicotinic alpha4 receptor subunit contributes to the lining of the ion channel pore when expressed with the 5-HT3 receptor subunit. J Biol Chem 274:3934–3936

    Article  PubMed  CAS  Google Scholar 

  • Kriegler S, Sudweeks S, Yakel JL (1999b) MTSEA potentiates 5-HT3 receptors containing the nicotinic alpha4 subunit. Neuropharmacology 38:1913–1915

    Article  PubMed  CAS  Google Scholar 

  • Lambert JJ, Peters JA, Hales TG, Dempster J (1989) The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br J Pharmacol 97:27–40

    PubMed  CAS  Google Scholar 

  • Leslie RA, Reynolds DJ, Andrews PL, Grahame-Smith DG, Davis CJ, Harvey JM (1990) Evidence for presynaptic 5-hydroxytryptamine3 recognition sites on vagal afferent terminals in the brainstem of the ferret. Neuroscience 38:667–673

    Article  PubMed  CAS  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5-HT3 receptor, a serotonin-gated ion channel. Science 254:432–437

    Article  PubMed  CAS  Google Scholar 

  • McMahon LL, Kauer JA (1997) Hippocampal interneurons are excited via serotonin-gated ion channels. J Neurophysiol 78:2493–2502

    PubMed  CAS  Google Scholar 

  • Miquel MC, Emerit MB, Nosjean A, Simon A, Rumajogee P, Brisorgueil MJ, Doucet E, Hamon M, Verge D (2002) Differential subcellular localization of the 5-HT3-As receptor subunit in the rat central nervous system. Eur J Neurosci 15:449–457

    Article  PubMed  Google Scholar 

  • Monk SA, Desai K, Brady CA, Williams JM, Lin L, Princivalle A, Hope AG, Barnes NM (2001) Generation of a selective 5-HT3B subunit-recognising polyclonal antibody; identification of immunoreactive cells in rat hippocampus. Neuropharmacology 41:1013–1016

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17:3157–3167

    PubMed  CAS  Google Scholar 

  • Morales M, Wang SD (2002) Differential composition of 5-hydroxytryptamine3 receptors synthesized in the rat CNS and peripheral nervous system. J Neurosci 22:6732–6741

    PubMed  CAS  Google Scholar 

  • Morales M, Battenberg E, Lecea L de, Bloom FE (1996a) The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus. Brain Res 731:199–202

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Battenberg E, Lecea L de, Sanna PP, Bloom FE (1996b) Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. Brain Res Mol Brain Res 36:251–260

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organisation of the neocortex. Brain 120:701–722

    Article  PubMed  Google Scholar 

  • Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432

    Article  PubMed  CAS  Google Scholar 

  • Nayak SV, Ronde P, Spier AD, Lummis SC, Nichols RA (1999) Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain. Neuroscience 91:107–117

    Article  PubMed  CAS  Google Scholar 

  • Nayak SV, Ronde P, Spier AD, Lummis SC, Nichols RA (2000) Nicotinic receptors co-localize with 5-HT3 serotonin receptors on striatal nerve terminals. Neuropharmacology 39:2681–2690

    Article  PubMed  CAS  Google Scholar 

  • Neijt HC, Vijverberg HPM, Bercken J van den (1986) The dopamine response in mouse neuroblastoma cells is mediated by serotonin 5-HT3 receptors. Eur J Pharmacol 127:271–274

    Article  PubMed  CAS  Google Scholar 

  • Nichols RA, Mollard P (1996) Direct observation of serotonin 5-HT3 receptor-induced increases in calcium levels in individual brain nerve terminals. J Neurochem 67:581–592

    Article  PubMed  CAS  Google Scholar 

  • Niesler B, Frank B, Kapeller J, Rappold GA (2003) Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene 310:101–111

    Article  PubMed  CAS  Google Scholar 

  • Porras G, De Deurwaerdere P, Moison D, Spampinato U (2003) Conditional involvement of striatal serotonin3 receptors in the control of in vivo dopamine outflow in the rat striatum. Eur J Neurosci 17:771–781

    Article  PubMed  Google Scholar 

  • Pratt GD, Bowery NG (1989) The 5-HT3 receptor ligand, [3H]BRL 43694, binds to presynaptic sites in the nucleus tractus solitarius of the rat. Neuropharmacol 28:1367–1376

    Article  CAS  Google Scholar 

  • Pratt GD, et al (1990) Consensus meeting agrees distribution of 5-HT3 receptors in mammalian hindbrain. Trends Pharmacol Sci 11:135–137

    Article  PubMed  CAS  Google Scholar 

  • Reznic J, Staubli U (1997) Effects of 5-HT3 receptor antagonism on hippocampal cellular activity in the freely moving rat. J Neurophysiol 77:517–521

    PubMed  CAS  Google Scholar 

  • Richardson BP, Engel G, Donatsch P, Stadler PA (1985) Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316:126–131

    Article  PubMed  CAS  Google Scholar 

  • Roerig B, Nelson DA, Katz LC (1997) Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci 17:8353–8362

    PubMed  CAS  Google Scholar 

  • Ronde P, Nichols RA (1998) High calcium permeability of serotonin 5-HT3 receptors on presynaptic nerve terminals from rat striatum. J Neurochem 70:1094–1103

    Article  PubMed  CAS  Google Scholar 

  • Ronde P, Nichols RA (2001) Postsynaptic target regulates functional responses induced by 5-HT3 serotonin receptors on axonal varicosities of NG108-15 hybrid neuroblastoma cells. Neuroscience 102:979–987

    Article  PubMed  CAS  Google Scholar 

  • Ropert N, Guy N (1991) Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J Physiol (Lond) 441:121–136

    CAS  Google Scholar 

  • Scott MM, Deneris ES (2005) Making and breaking serotonin neurons and autism. Int J Devl Neurosci 23:277–285

    Article  CAS  Google Scholar 

  • Smiley JF, Goldman-Rakic PS (1996) Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy. J Comp Neurol 367:431–443

    Article  PubMed  CAS  Google Scholar 

  • Staubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 15:2445–2452

    PubMed  CAS  Google Scholar 

  • Sudweeks SN, van Hooft JA, Yakel JL (2002) Serotonin 5-HT3 receptors in rat CA1 hippocampal interneurons: functional and molecular characterization. J Physiol (Lond) 544:715–726

    Article  CAS  Google Scholar 

  • Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci USA 90:1430–1434

    Article  PubMed  CAS  Google Scholar 

  • Turner TJ, Mokler DJ, Luebke JI (2004) Calcium influx through presynaptic 5-HT3 receptors facilitates GABA release in the hippocampus: in vitro slice and synaptosome studies. Neuroscience 129:703–718

    Article  PubMed  CAS  Google Scholar 

  • van Hooft JA, Vijverberg HPM (2000) 5-HT3 receptors and neurotransmitter release in the CNS: a nerve ending story? Trends Neurosci 23:605–610

    Article  PubMed  Google Scholar 

  • van Hooft JA, Wadman WJ (2003) Ca2+ ions block and permeate serotonin 5-HT3 receptor channels in rat hippocampal interneurons. J Neurophysiol 89:1864–1869

    Article  PubMed  Google Scholar 

  • van Hooft JA, Yakel JL (2003) 5-HT3 receptors in the CNS: 3B or not 3B? Trends Pharmacol Sci 24:157–160

    Article  PubMed  CAS  Google Scholar 

  • van Hooft JA, Spier AD, Yakel JL, Lummis SC, Vijverberg HPM (1998) Promiscuous coassembly of serotonin 5-HT3 and nicotinic alpha4 receptor subunits into Ca2+-permeable ion channels. Proc Natl Acad Sci USA 95:11456–11461

    Article  PubMed  Google Scholar 

  • Vitalis T, Parnavelas JG (2003) The role of serotonin in early cortical development. Dev Neurosci 25:245–256

    Article  PubMed  CAS  Google Scholar 

  • Whitaker-Azmitia PM (2005) Behavioral and cellular consequences of increasing serotoninergic activity during brain development: a role in autism? Int J Dev Neurosci 23:75–83

    Article  CAS  Google Scholar 

  • Whitaker-Azmitia PM, Zang X, Clarke C (1994) Effects of gestational exposure to monoamine oxidase inhibitors in rats: preliminary behaviour and neurochemical stidies. Neuropsychopharmacology 11:125–132

    PubMed  CAS  Google Scholar 

  • Yakel JL, Jackson MB (1988) 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron 1:615–621

    Article  PubMed  CAS  Google Scholar 

  • Yakel JL, Trussell LO, Jackson MB (1988) Three serotonin responses in cultured mouse hippocampal and striatal neurons. J Neurosci 8:1273–1285

    PubMed  CAS  Google Scholar 

  • Zhou FM, Hablitz JJ (1999) Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J Neurophysiol 82:2989–2999

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes A. van Hooft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chameau, P., van Hooft, J.A. Serotonin 5-HT3 receptors in the central nervous system. Cell Tissue Res 326, 573–581 (2006). https://doi.org/10.1007/s00441-006-0255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0255-8

Keywords

Navigation