Skip to main content

Advertisement

Log in

Immunogold-labeled S-phase neoblasts, total neoblast number, their distribution, and evidence for arrested neoblasts in Macrostomum lignano (Platyhelminthes, Rhabditophora)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neoblasts in Platyhelminthes are the only cells to proliferate and differentiate into all cell types. In Macrostomum lignano, the incorporation of 5′-bromo-2′-deoxyuridine (BrdU) in neoblasts confirmed the distribution of S-phase cells in two lateral bands. BrdU labeling for light and for transmission electron microscopy (TEM) identified three populations of proliferating cells: somatic neoblasts located between the epidermis and gastrodermis (mesodermal neoblasts), neoblasts located within the gastrodermis (gastrodermal neoblasts), and gonadal S-phase cells. In adults, three stages of mesodermal neoblasts (2, 2–3, and 3) defined by their ultrastructure were found. Stage 1 neoblasts where only seen in hatchlings. These stages either were phases within the S-phase of one neoblast pool or were subsequent stages of differentiating neoblasts, each with its own cell cycle. Regular TEM and immunogold labeling provided the basis for calculating the total number of neoblasts and the ratio of labeled to non-labeled neoblasts. Somatic neoblasts represented 6.5% of the total number of cells. Of these, 27% were labeled in S-phase. Of this fraction, 33% were in stage 2, 46% in stage 2–3, and 21% in stage 3. Immunogold labeling substantiated results concerning the differentiation of neoblasts into somatic cells. Non-labeled stage 2 neoblasts were present, even after a 2-week BrdU exposure. Double labeling of mitoses and FMRF-amide revealed a close spatial relationship of mesodermal neoblasts with the nervous system. Immunogold-labeled sections showed that nearly 70% of S-phase cells were in direct contact or within 5 μm from nerve cords.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agata K (2001) The regeneration system of planarians. Belg J Zool 131:101

    Google Scholar 

  • Baguñà J (1976) Mitosis in the intact and regenerating planarian Dugesia mediterranea n. sp. I. Mitotic studies during growth, feeding and starvation. J Exp Biol 195:53–64

    Google Scholar 

  • Baguñà J (1981) Planarian neoblasts. Nature 290:14–15

    Article  Google Scholar 

  • Baguñà J (1998) Planarians. In: Ferretti P, Géraudie J (eds) Cellular and molecular basis of regeneration: from invertebrates to human. Wiley, Chichester, pp 135–166

    Google Scholar 

  • Baguñà J, Boyer BC (1990) Descriptive and experimental embryology of the Turbellaria: present knowledge, open questions and future trends. In: Marthy HJ (ed) Experimental embryology in aquatic plants and animals. Plenum, New York, pp 95–128

    Google Scholar 

  • Baguñà J, Romero R (1981) Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia 84:181–194

    Article  Google Scholar 

  • Baguñà J, Saló E, Romero R (1989) Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. Int J Dev Biol 33:261–266

    PubMed  Google Scholar 

  • Behensky C, Schürmann W, Peter R (2001) Quantitative analysis of turbellarian cell suspensions by fluorescent staining with acridine orange, and video microscopy. Belg J Zool 131:131–136

    Google Scholar 

  • Best JB, Rosenvold R, Souders J, Wade C (1965) Studies on the incorporation of isotopically labeled nucleotides and amino acids in planaria. J Exp Zool 159:397–403

    Article  PubMed  CAS  Google Scholar 

  • Brøndsted H (1969) Planarian regeneration, Pergamon, Oxford

    Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Ehlers U (1995) The basic organization of the Plathelminthes. Hydrobiologia 305:21–26

    Article  Google Scholar 

  • Eisenman EA, Alfert M (1982) A new fixation procedure for preserving the ultrastructure of marine invertebrate tissues. J Microsc 125:117–120

    Google Scholar 

  • Gremigni V (1981) The problem of cell totipotency, dedifferentiation and transdifferentiation in Turbellaria. Hydrobiologia 84:171–179

    Article  Google Scholar 

  • Gremigni V (1988) Planarian regeneration: an overview of some cellular mechanisms. Zool Sci 5:1153–1163

    Google Scholar 

  • Gschwentner R, Ladurner P, Nimeth K, Rieger R (2001) Stem cells in a basal bilaterian. S-phase and mitotic cells in Convolutriloba longifissura (Acoela, Platyhelminthes). Cell Tissue Res 304:401–408

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson MKS (1976) Studies on cytodifferentiation in the neck region of Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidae). Z Parasitenk 50:323–329

    Article  CAS  Google Scholar 

  • Gustafsson MKS (1990) The cells of a cestode—Diphyllobothrium dendriticum as a model in cell biology. In: Gustafsson MKS, Reuter M (eds) The early brain. Åbo Academy Press, Åbo, pp 13–44

    Google Scholar 

  • Hacker GW, Muss WH, Hauser-Kronberger C, Danscher G, Rufner R, Gu J, Su H, Andreasen A, Stoltenberg M, Dietze O (1996) Electron microscopical autometallography: immunogold-silver staining (IGSS) and heavy-metal histochemistry. Methods 10:257–269

    Article  PubMed  CAS  Google Scholar 

  • Hay ED, Coward SJ (1975) Fine structure studies on the planarian, Dugesia. I. Nature of the “neoblast” and other cell types in noninjured worms. J Ultrastruct Res 50:1–21

    Article  PubMed  CAS  Google Scholar 

  • Hori I (1997) Cytological approach to morphogenesis in the planarian blastema. II. The effect of neuropeptides. J Submicrosc Cytol Pathol 29:91–97

    PubMed  CAS  Google Scholar 

  • Hori I, Kishida Y (1998) A fine-structural study of regeneration after fission in the planarian Dugesia japonica. Hydrobiologia 383:131–136

    Article  Google Scholar 

  • Hori I, Hikosaka-Katayama T, Kishida Y (1999) Cytological approach to morphogenesis in the planarian blastema. III. Ultrastructure and regeneration of the acoel turbellarian Convoluta naikaiensis. J Submicrosc Cytol Pathol 31:247–258

    Google Scholar 

  • Jaunin F, Visser AE, Cmarko D, Aten JA, Fakan S (1998) A new immunocytochemical technique for ultrastructural analysis of DNA replication in proliferating cells after application of two halogenated deoxyuridines. J Histochem Cytochem 46:1203–1209

    PubMed  CAS  Google Scholar 

  • Ladurner P, Rieger R, Baguñà J (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyuridine analysis. Dev Biol 226:231–241

    Article  PubMed  CAS  Google Scholar 

  • Ladurner P, Schärer L, Rieger RM (2005) A new model organism among the lower Bilateria and the use of digital microscopy in taxonomy of meiobenthic Platyhelminthes: Macrostomum lignano, n. sp. (Rhabditophora, Macrostomorpha). J Zool Sys Evol Res 43:114–126

    Article  Google Scholar 

  • Mazzotti G, Gobbi P, Manzoli L, Falconi M (1998) Nuclear morphology during the S Phase. Microsc Res Tech 40:418–431

    Article  PubMed  CAS  Google Scholar 

  • Morita M (1995) Structure and function of the reticular cell in the planarian Dugesia dorotocephala. Hydrobiologia 305:189–196

    Article  Google Scholar 

  • Morita M, Best JB, Noel J (1969) Electron microscopic studies of planarian regeneration. I. Fine structure of neoblasts in Dugesia dorotocephala. J Ultrastruct Res 27:7–23

    Article  Google Scholar 

  • Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    Article  PubMed  CAS  Google Scholar 

  • Newmark PA, Sánchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    Article  PubMed  CAS  Google Scholar 

  • Nimeth K, Ladurner P, Gschwentner R, Salvenmoser W, Rieger R (2002) Cell renewal and apoptosis in Macrostomum sp. [Lignano]. Cell Biol Int 26:801–815

    Article  PubMed  CAS  Google Scholar 

  • Nimeth KT, Mahlknecht M, Mezzanato A, Peter R, Rieger R, Ladurner P (2004) Stem cell dynamics during growth, feeding and starvation in the basal flatworm Macrostomum sp. (Platyhelminthes). Dev Dyn 230:91–99

    Article  PubMed  Google Scholar 

  • Palmberg I (1986) Cell migration and differentiation during wound healing and regeneration in Microstomum lineare (Turbellaria). Hydrobiologia 132:181–188

    Article  Google Scholar 

  • Palmberg I (1990) Stem cells in microturbellarians: an autoradiographic and immunocytochemical study. Protoplasma 158:109–120

    Article  Google Scholar 

  • Palmberg I, Reuter M (1983) Asexual reproduction in Microstomum lineare (Turbellaria). I. An autoradiographic and ultrastructural study. Int J Inv Repr 6:197–206

    Google Scholar 

  • Pedersen KJ (1959) Cytological studies on planarian neoblasts. Z Zellforsch 50:799–817

    Article  CAS  Google Scholar 

  • Peter R (1995) Regenerative and reproductive capacities of the fissiparous planarian Dugesia tahitiensis. Hydrobiologia 305:261

    Article  Google Scholar 

  • Peter R (2001) Experimentelle Systeme zum Studium von Regenerationsvorgängen: Turbellarien als Modellorganismen mit einem Stammzellensystem. Ber Nat-Med Verein Innsbruck 88:287–350

    Google Scholar 

  • Peter R, Ladurner P, Rieger RM (2001) The role of stem cell strategies in coping with environmental stress and choosing between alternative reproductive modes: turbellaria rely on a single cell type to maintain individual life and propagate species. Mar Ecol—PSZNI 22:35–51

    Article  Google Scholar 

  • Peter R, Gschwentner R, Schürmann W, Rieger RM, Ladurner P (2004) The significance of stem cells in free-living flatworms: one common source for all cells in the adult. J Appl Biomed 2:21–35

    Google Scholar 

  • Reuter M, Kreshchenko N (2004) Flatworm asexual multiplication implicates stem cells and regeneration. Can J Zool 82:334–356

    Article  Google Scholar 

  • Rieger RM, Gehlen M, Haszprunar G, Holmlund M, Legniti A, Salvenmoser W, Tyler S (1988) Laboratory cultures of marine Macrostomida (Turbellaria). Fortschr Zool 36:525

    Google Scholar 

  • Rieger RM, Tyler S, Smith JPS, Rieger GE (1991) Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ (eds) Microscopic anatomy of invertebrates, platyhelminthes and nemertinea. Wiley-Liss, New York, pp 7–140

    Google Scholar 

  • Rieger RM, Salvenmoser W, Legniti A, Tyler S (1994) Phalloidin-rhodamine preparations of Macrostomum hystricinum marinum (Plathelminthes): morphology and postembryonic development of the musculature. Zoomorphology 114:133–147

    Article  Google Scholar 

  • Rieger RM, Legniti A, Ladurner P, Reiter D, Asch E, Salvenmoser W, Schürmann W, Peter R (1999) Ultrastructure of neoblasts in microturbellaria: significance for understanding stem cells in free-living Platyhelminthes. Invertebr Repr Dev 35:127–140

    Google Scholar 

  • Salvenmoser W, Riedl D, Ladurner P, Rieger R (2001) Early steps in the regeneration of the musculature in Macrostomum sp. (Macrostomorpha, Platyhelminthes). Belg J Zool 131:105–109

    Google Scholar 

  • Saló E, Baguñà J (1984) Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J Embryol Exp Morphol 83:63–80

    PubMed  Google Scholar 

  • Saló E, Baguñà J (2002) Regeneration in planarians and other worms: new findings, new tools, and new perspectives. J Exp Zool 292:528–539

    Article  PubMed  Google Scholar 

  • Sánchez Alvarado A, Newmark PA, Robb SMC, Juste R (2002) The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129:5659–5665

    Article  PubMed  Google Scholar 

  • Sauzin-Monnot MJ (1973) Ultrastructural study of the Dendrocoelum lacteum neoblast during regeneration. J Ultrastruct Res 45:206–222

    Article  PubMed  CAS  Google Scholar 

  • Schärer L, Ladurner P (2003) Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite. Proc R Soc Lond [Biol] 270:935–941

    Article  Google Scholar 

  • Schärer L, Ladurner P, Rieger RM (2004) Bigger testes are more active: experimental evidence that testis size reflects testicular cell proliferation activity in the marine invertebrate, the free-living flatworm Macrostomum sp. Behav Ecol Sociobiol 56:420–425

    Article  Google Scholar 

  • Schürmann W, Betz S, Peter R (1998) Separation and subtyping of planarian neoblasts by density-gradient centrifugation and staining. Hydrobiologia 383:117–124

    Article  Google Scholar 

  • Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa (vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206:73–87

    Article  PubMed  CAS  Google Scholar 

  • Smith AG, McKerr G (2000) Tritiated thymidine ([3H]-TdR) and immunocytochemical tracing of cellular fate within the asexually dividing cestode Mesocestoides vogae (syn. M. corti). Parasitology 121:105–110

    Article  PubMed  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–45

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T (2002) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504:37–45

    PubMed  CAS  Google Scholar 

  • Willms K, Merchant MT, Gomez M, Robert L (2001) Taenia solium: germinal cell precursors in tapeworms grown in hamster intestine. Arch Med Res 32:1–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gunde Rieger and Robert Gschwentner for rewarding discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ladurner.

Additional information

P.L. was the recipient of an APART fellowship (no. 10841) from the Austrian Academy of Sciences, and Z.A. was the recipient of an Ernst Mach fellowship from the ÖAD. This work was also supported by FWF grants 15204 and 16618 to R.M.R and P18099 to P.L.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bode, A., Salvenmoser, W., Nimeth, K. et al. Immunogold-labeled S-phase neoblasts, total neoblast number, their distribution, and evidence for arrested neoblasts in Macrostomum lignano (Platyhelminthes, Rhabditophora). Cell Tissue Res 325, 577–587 (2006). https://doi.org/10.1007/s00441-006-0196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0196-2

Keywords

Navigation