Skip to main content

Advertisement

Log in

Differential expression of caveolin-3 in mouse smooth muscle cells in vivo

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Expression of caveolin-1 and -3 in mouse smooth muscle cells in vivo was examined by immunohistochemistry. Caveolin-1 was detected in almost all smooth muscles examined, except for the pupillary dilator muscle, whereas caveolin-3 was present only in smooth muscles of some specific tissues. In the eye, the pupillary sphincter muscle was intensely positive for caveolin-3, whereas the ciliary muscle and pupillary dilator muscle were negative. In the gastrointestinal tract, caveolin-3 was detected in the inner circular layer, but not in the outer longitudinal layer. Vascular smooth muscle cells of the resistance-sized artery in the uterus and corpus cavernosum were intensely positive for caveolin-3, whereas those of the aorta were only weakly positive and those of the vena cava were negative. Caveolin-3 was also detected in smooth muscle cells of the urinary bladder, ureter, prostatic vas deferens, and seminal vesicle. The different levels of caveolin-3 expression among various smooth muscle tissues were confirmed by Western blot analysis. Even within the same muscle, the relative expression levels of caveolin-1 and -3 were variable among neighboring cells, suggesting distinct fine regulation of expression of these two caveolins. Moreover, even in the same cell, caveolin-1 and -3 showed different distributions. These results indicate that the two caveolins form distinct caveolae in smooth muscles, and that caveolin-1 and -3 serve different functions. Their differential expression may therefore be related to the functional diversity of smooth muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson RGW (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  CAS  Google Scholar 

  • Bozler E (1948) Conduction, automaticity, and tonus of visceral muscle. Experientia 4:213–218

    Article  Google Scholar 

  • Burnstock G (1970) Structure of smooth muscle and its innervation. In: Tomita T (ed) Smooth muscle. Arnold, London, pp 1–69

    Google Scholar 

  • Capozza F, Cohen AW, Cheung MW, Sotgia F, Schubert W, Battista M, Lee H, Frank PG, Lisanti MP (2005) Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells. Am J Physiol Cell Physiol 288:C677–C691

    Article  PubMed  CAS  Google Scholar 

  • Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438

    Article  PubMed  CAS  Google Scholar 

  • Das K, Lewis RY, Scherer PE, Lisanti MP (1999) The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J Biol Chem 274:18721–18728

    Article  PubMed  CAS  Google Scholar 

  • Deurs B van, Roepstorff K, Hommelgaard AM, Sandvig K (2003) Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol 13:92–100

    Article  PubMed  Google Scholar 

  • Doyle DD, Upshaw-Earley J, Bell E, Palfrey HC (2003) Expression of caveolin-3 in rat aortic vascular smooth muscle cells is determined by developmental state. Biochem Biophys Res Commun 304:22–25

    Article  PubMed  CAS  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Fra AM, Williamson E, Simons K, Parton RG (1995) De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci USA 92:8655–8659

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Hagiwara H, Aoki T, Kogo H, Nomura R (1998) Caveolae: from a morphological point of view. J Electron Microsc Tokyo 47:451–460

    PubMed  CAS  Google Scholar 

  • Fujimoto T, Kogo H, Nomura R, Une T (2000) Isoforms of caveolin-1 and caveolar structure. J Cell Sci 113:3509–3517

    PubMed  CAS  Google Scholar 

  • Galbiati F, Volont D, Minetti C, Chu JB, Lisanti MP (1999) Phenotypic behavior of caveolin-3 mutations that cause autosomal dominant limb girdle muscular dystrophy (LGMD-1C). Retention of lgmd-1c caveolin-3 mutants within the Golgi complex. J Biol Chem 274:25632–25641

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 272:25437–25440

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara Y, Nishina Y, Yorifuji H, Kikuchi T (2002) Immunolocalization of caveolin-1 and caveolin-3 in monkey skeletal, cardiac and uterine smooth muscles. Cell Struct Funct 27:375–382

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Arakawa E, Oda S, Yanai N, Obinata M, Matsuda Y (1997) Novel smooth muscle cell lines from transgenic mice harboring temperature-sensitive SV40 large T-antigen gene. Temperature-dependent expression of smooth muscle myosin heavy chain-1 and calponin genes. J Mol Cell Cardiol 29:2177–2186

    Article  PubMed  CAS  Google Scholar 

  • Knight D, D’Arbe M, Liang S, Phillips WD, Lavidis NA (2003) Regional differences in sympathetic purinergic transmission along the length of the mouse vas deferens. Synapse 47:225–235

    Article  PubMed  CAS  Google Scholar 

  • Li S, Galbiati F, Volonte D, Sargiacomo M, Engelman JA, Das K, Scherer PE, Lisanti MP (1998) Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett 434:127–134

    Article  PubMed  CAS  Google Scholar 

  • Li WP, Liu P, Pilcher BK, Anderson RGW (2001) Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci 114:1397–1408

    PubMed  CAS  Google Scholar 

  • van Meer G (2001) Caveolin, cholesterol, and lipid droplets? J Cell Biol 152:F29–34

    Article  PubMed  Google Scholar 

  • Park DS, Woodman SE, Schubert W, Cohen AW, Frank PG, Chandra M, Shirani J, Razani B, Tang B, Jelicks LA, Factor SM, Weiss LM, Tanowitz HB, Lisanti MP (2002) Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol 160:2207–2217

    PubMed  CAS  Google Scholar 

  • Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H Jr, Knietz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable, but show evidence of hyper-proliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Lisanti MP (2001a) Caveolin-deficient mice: insights into caveolar function human disease. J Clin Invest 108:1553–1561

    PubMed  CAS  Google Scholar 

  • Razani B, Lisanti MP (2001b) Caveolins and caveolae: molecular and functional relationships. Exp Cell Res 271:36–44

    Article  PubMed  CAS  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RGW (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Rybin VO, Grabham PW, Elouardighi H, Steinberg SF (2003) Caveolae-associated proteins in cardiomyocytes: caveolin-2 expression and interactions with caveolin-3. Am J Physiol Heart Circ Physiol 285:H325–H332

    PubMed  CAS  Google Scholar 

  • Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP (1996) Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 93:131–135

    Article  PubMed  CAS  Google Scholar 

  • Segal SS, Brett SE, Sessa WC (1999) Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. Am J Physiol 277:H1167–H1177

    PubMed  CAS  Google Scholar 

  • Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160–15165

    Article  PubMed  CAS  Google Scholar 

  • Sotgia F, Bonuccelli G, Minetti C, Woodman SE, Capozza F, Kemp RG, Scherer PE, Lisanti MP (2003) Phosphofructokinase muscle-specific isoform requires caveolin-3 expression for plasma membrane recruitment and caveolar targeting: implications for the pathogenesis of caveolin-related muscle diseases. Am J Pathol 163:2619–2634

    PubMed  CAS  Google Scholar 

  • Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioce P, Sargiacomo M, Minetti C, Sudol M, Lisanti MP (2000) Caveolin-3 directly interacts with the C-terminal tail of beta-dystroglycan: identification of a central WW-like domain within caveolin family members. J Biol Chem 275:38048–38058

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261

    Article  PubMed  CAS  Google Scholar 

  • Toya Y, Schwencke C, Couet J, Lisanti MP, Ishikawa Y (1998) Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology 139:2025–2031

    Article  PubMed  CAS  Google Scholar 

  • Venema VJ, Ju H, Zou R, Venema RC (1997) Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272:28187–28190

    Article  PubMed  CAS  Google Scholar 

  • Way M, Parton RG (1996) M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett 378:108–112

    Article  PubMed  CAS  Google Scholar 

  • Woodman SE, Cheung MW, Tarr M, North AC, Schubert W, Lagaud G, Marks CB, Russell RG, Hassan GS, Factor SM, Christ GJ, Lisanti MP (2004a) Urogenital alterations in aged male caveolin-1 knockout mice. J Urol 171:950–957

    Article  PubMed  CAS  Google Scholar 

  • Woodman SE, Sotgia F, Galbiati F, Minetti C, Lisanti MP (2004b) Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology 62:538–543

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Toya Y, Schwencke C, Lisanti MP, Myers MG Jr, Ishikawa Y (1998) Caveolin is an activator of insulin receptor signaling. J Biol Chem 273:26962–26968

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Akiko Iizuka-Kogo and Dr. Ryuji Nomura, Fujita Health University School of Medicine, and to Dr. Shigeko Torihashi, Nagoya University Graduate School of Medicine, for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kogo.

Additional information

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of the Japanese Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogo, H., Ito, Sy., Moritoki, Y. et al. Differential expression of caveolin-3 in mouse smooth muscle cells in vivo. Cell Tissue Res 324, 291–300 (2006). https://doi.org/10.1007/s00441-005-0130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0130-z

Keywords

Navigation