Skip to main content
Log in

Glycosylation and sorting pathways of lysosomal enzymes in mussel digestive cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Our aim was to contribute to the understanding of the synthesis, maturation and activation of lysosomal enzymes in an invertebrate cellular model: the endo-lysosomal system (ELS) of mussel digestive cells. The activities of 5′–nucleotidase (AMPase), arylsulphatase (ASase) and acid phosphatase (AcPase), which are transported towards acidic compartments as membrane proteins, were localised by enzyme cytochemistry. AcPase activity was found within large heterolysosomes and residual bodies. ASase was located in endosomes, endolysosomes and heterolysosomes. AcPase and ASase activities were recorded within small vesicles and cisterns of the trans-Golgi network. Conversely, AMPase activity was primarily found in microvilli and apical vesicles and, less conspicuously, in lysosomes and the cis-side of the Golgi and the cis-Golgi network (CGN). In order to understand the processes of synthesis and maturation of these lysosomal enzymes, selected glycoconjugates were localised after lectin cytochemistry. N-acetylglucosamine, mannose and fucose residues were almost ubiquitous in the ELS, as were galactose residues, which were apparently less abundant. N-acetylglucosamine residues occurred in the inner membrane co-localised with mannose residues within the lysosomal and pre-lysosomal acidic compartments. Based on these results, glycosylation and sorting pathways are proposed for both soluble and membrane enzymes. Unlike in mammalian cells, O-glycosylation is fully completed in the CGN, mannose addition in N-glycosylation extends beyond the CGN and galactose addition is fully achieved at the intermediate side. Sorting of soluble lysosomal enzymes, as in crustaceans, is mediated by the indirect transport of membrane-linked proteins with GlcNAc1-P6Man residues that are removed in endolysosomes and heterolysosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7
Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12
Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17
Fig. 18 Fig. 19 Fig. 20 Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Almendros A, Porcel D (1992) Phosphatase activity in the hepatopancreas of Helix aspersa. Comp Biochem Physiol 103A:455–460

    Article  CAS  Google Scholar 

  • Alvarez V, Parodi AJ, Couso R (1995) Characterization of the mannose 6–phosphate-dependent pathway of lysosomal enzyme routing in an invertebrate. Biochem J 310:589–595

    PubMed  CAS  Google Scholar 

  • Bowen ID, Davis P (1971) The fine structure distibution of acid phophatase in the digestive gland of Arion hortensis (F.). Protoplasma 73:78–81

    Article  Google Scholar 

  • Braun M, Waheed A, Von Figura K (1989) Lysosomal acid phosphatase is transported to lysosomes via the cell surface. EMBO J 8:3633–3640

    PubMed  CAS  Google Scholar 

  • Busch A, Schumacher U, Storch V (2001) Histochemistry of lectin-binding sites in Halicryptus spinulosus (Priapulida). Acta Histochem 103:9–19

    Article  PubMed  CAS  Google Scholar 

  • Cajaraville MP, Díez G, Marigómez I, Angulo E (1991) Consequences of keeping Mytilus in the laboratory as assessed by different cellular condition indices. Helgol Meeresunters 45:445–464

    Article  Google Scholar 

  • Cajaraville MP, Robledo Y, Etxeberria M, Marigómez I (1995) Cellular biomarkers as useful tools in the biological monitoring of environmental pollution: molluscan digestive lysosomes. In: Cajaraville MP (ed) Cell biology in environmental toxicology. University of Basque Country Press, Bilbo, pp 29–55

    Google Scholar 

  • Castells MT, Madrid JF, Avilés M, Martínez–Menárguez JA, Ballesta J (1994) Cytochemical characterization of sulfo- and sialoglycoconjugates of human laryngeal glandular cells. J Histochem Cytochem 42:485–496

    PubMed  CAS  Google Scholar 

  • Clairmont KB, Czech MP (1989) Chicken and Xenopus mannose 6-phosphate receptors fail to bind insulin-like growth factor-II. J Biol Chem 264:390–392

    Google Scholar 

  • Coppee I, Gabius H–J, Danguy A (1993) Histochemical analysis of carbohydrate moieties and sugar-specific acceptors in the kidneys of the laboratory mouse and the golden spiny mouse (Acomys russatus). Histol Histopathol 8:673–683

    PubMed  CAS  Google Scholar 

  • Danguy A, Akif F, Pajak B, Gabius H–J (1994) Contribution of carbohydrate histochemistry to glycobiology. Histol Histopathol 9:155–171

    PubMed  CAS  Google Scholar 

  • Dimitriadis VK, Liosi M (1992) Ultrastructural localization of periodate-reactive complex carbohydrates and acid-alkaline phosphatases in digestive gland cells of fed and hibernated Helix lucorum (Mollusca: Helicidae). J Moll Stud 58:233–243

    Article  Google Scholar 

  • Dunphy WG, Rothman JE (1985) Compartmental organization of the Golgi stack. Cell 42:13–21

    Article  PubMed  CAS  Google Scholar 

  • Egea G, Go1dstein IJ, Roth J (1989) Light and electron microscopic detection of (3Ga1β1,4 GlcNAc1) sequences in asparagine-linked oligosaccharides with the Datura stramonium lectin. Histochemistry 92:515–522

    Article  PubMed  CAS  Google Scholar 

  • Ellinger A, Pavelka M (1992) Subdomains of the rough endoplasmic reticulum in colon goblet cells or the rat. Lectin cytochemical characterization. J Histochem Cytochem 40:919–930

    PubMed  CAS  Google Scholar 

  • Farqhuar MG, Palade GE (1981) The Golgi apparatus (complex)—(1954–1981)—from artifact to center stage. J Cell Biol 91:77–103

    Article  PubMed  Google Scholar 

  • Farqhuar NIG, Bergeron JJM, Palade GE (1974) Cytochemistry of Golgi fractions prepared from rat liver. J Cell Biol 60:8–25

    Article  PubMed  Google Scholar 

  • Fleischer B (1983) Mechanism of glycosylation in the Golgi apparatus. J Histochem Cytochem 31:1033–1040

    PubMed  CAS  Google Scholar 

  • Fukuda M (1991) Lysosomal membrane glycoproteins. J Biol Chem 266:21327–21330

    PubMed  CAS  Google Scholar 

  • Gaut JR, Hendershot LM (1993) The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 5:589–595

    Article  PubMed  CAS  Google Scholar 

  • Geoghegan WD, Ackerman GA (1977) Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ, and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem 25:1187–1200

    PubMed  CAS  Google Scholar 

  • Glickman JN, Kornfeld S (1993) Mannose 6-phosphate-independent targeting of lysosomal enzymes in I-cell disease B lymphoblasts. J Cell Biol 123:99–108

    Article  PubMed  CAS  Google Scholar 

  • Goldstein IJ, Hayes CE (1978) The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–340

    PubMed  CAS  Google Scholar 

  • Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization, and carbohydrate-binding specificity of lectins. In: Liener IR, Sharon N, Go1dstein IJ (eds) The lectins. Properties, functions and applications in biology and medicine. Academic Press, Orlando, pp 33–247

    Google Scholar 

  • Goldstein IJ, Hammarström S, Sundblad G (1975) Precipitation and carbohydrate-binding specificity studies on wheat germ agglutinin. Biochim Biophys Acta 405:53–61

    PubMed  CAS  Google Scholar 

  • Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–213

    Article  PubMed  CAS  Google Scholar 

  • Green ED, Brodbeek RM, Baezinger JU (1987) Lectin affinity high performance liquid chromatography. Interactions of N-glycanase-released oligosaccharides with Ricinus communis agglutinin I and Ricinus communis agglutinin II. J Biol Chem 262:12030–12037

    PubMed  CAS  Google Scholar 

  • Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234:438–442

    Article  PubMed  CAS  Google Scholar 

  • Gutternigg M, Ahrer K, Grabher–Meier H, Bürgmayr S, Staudacher E (2004) Neutral N–glycans of the gastropod Arion lusitanicus. Eur J Biochem 271:1348–1356

    Article  PubMed  CAS  Google Scholar 

  • Hasilik A (1992) The early and late processing of lysosomal enzymes: proteolysis and compartmentation. Experientia 48:130–151

    Article  PubMed  CAS  Google Scholar 

  • Hille A, Klumperman J, Geuze HJ, Peters C, Bordsky FM, Von Figura K (1992) Lysosomal acid phosphatase is internalized via clathrin-coated pits. Eur J Cell Biol 59:106–115

    PubMed  CAS  Google Scholar 

  • Holtzman E (1989) Lysosomes. Plenum, New York

    Google Scholar 

  • Hopsu–Havu VK, Arstila AV, Helminen HJ, Kalimo HO (1967) Improvements in the method for the electron microscopic localization of aryl-sulphatase activity. Histochemie 8:54–62

    PubMed  CAS  Google Scholar 

  • Ito M, Takata I, Saito S, Aoyagi T, Hirano H (1985) Lectin-binding pattern in normal human gastric mucosa. A light and electron microscopic study. Histochemistry 83:189–193

    Article  PubMed  CAS  Google Scholar 

  • Jarvis DL, Finn EE (1995) Biochemical analysis of the N–glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology 212:500–511

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky MJ (1971) Use of ferrocyanide-reduced osmium tetroxide under electron microscopy, Proc 11th Meeting Am Soc Cell Biol, New Orleans, USA, pp 146

  • Ketchman CM, Kornfeld S (1992) Purification of UDP-N-Acetylglucosamine-1-phosphotransferase from Acanthamoeba castellani and identification of a subunit of the enzyme. J Biol Chem 267:1645–1653

    Google Scholar 

  • Kornfeld S (1992) Structure and function of the mannose 6-phosphate/insuline growth factor 11 receptors. Annu Rev Biochem 61:307–330

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 50:631–664

    Article  Google Scholar 

  • Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–468

    Article  Google Scholar 

  • Lakshmi YU, Radha Y, Hille–Rehfeld A, Von Figura K, Kumar NS (1999) Identification of the putative mannose 6–phosphate receptor protein (MPR 300) in the invertebrate Unio. Basic Rep 19:403–409

    Article  CAS  Google Scholar 

  • Lang L, Kornfeld S (1984) A simplified procedure for synthesizing large quantities of highly purified uridine [beta-32P]diphospho-N-acetylglucosamine. Anal Biochem 140:264–269

    Article  PubMed  CAS  Google Scholar 

  • Madrid JF, Ballesta J, Galera T, Castells MT, Pérez–Tomás R (1989) Histochemistry of glycoconjugates in the gallbladder epithelium of ten animal species. Histochemistry 91:437–443

    Article  PubMed  CAS  Google Scholar 

  • Martínez–Menárguez JA, Ballesta J, Avilés M, Castells MT, Madrid JF (1992) Cytochemical characterization of glycoproteins in the developing acrosome of rats. An ultrastructural study using lectin histochemistry, enzymes and chemical deglycosylation. Histochemistry 97:439–449

    Article  PubMed  Google Scholar 

  • Martínez–Menárguez JA, Avilés M, Madrid JF, Castells MT, Ballesta J (1993) Glycosylation in Golgi apparatus of early spermatids of rat. A high resolution lectin cytochemical study. Eur J Cell Biol 61:21–33

    PubMed  Google Scholar 

  • Morré DJ, Ovtracht L (1977) Dynamics of the Golgi apparatus: membrane differentiation and membrane flow. Int Rev Cytol 5:61–188

    Google Scholar 

  • Morton B (1983) Feeding and digestion in Bivalvia. In: Saleuddin ASM, Wilburg M (eds) The Mollusca, vol 5. Academic Press, New York, pp 65–147

    Google Scholar 

  • Murata F, Tsuyama S, Kanae T, Ihida K, Yang D–H (1994) Sites of glycosylation observed by post-embedding and pre-embedding lectin staining. Acta Histochem Cytochem 27:607–612

    CAS  Google Scholar 

  • Nadimpalli SK, Von Figura K (2002) Identification of the putative mannose 6-phosphate receptor (MPR 46) protein in the invertebrate mollusc. Biosci Rep 22:513–521

    Article  PubMed  Google Scholar 

  • Nadimpalli SK, Yerramalla UL, Hille–Rehfeld A, Von Figura K (1999) Mannose 6–phosphate receptors (MPR 300 and MPR 46) from a teleostean fish (trout). Comp Biochem Physiol 123B:261–265

    CAS  Google Scholar 

  • Neiss WF (1984) A coat of glycoconjugates on the inner surface of the lysosomal membrane in the rat kidney. Histochemistry 80:603–608

    Article  PubMed  CAS  Google Scholar 

  • Ng DTW, Walter P (1994) Protein translocation across the endoplasmic reticulum. Curr Opin Cell Biol 6:510–516

    Article  PubMed  CAS  Google Scholar 

  • Nilsson T, Warren G (1994) Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr Opin Cell Biol 6:517–521

    Article  PubMed  CAS  Google Scholar 

  • Osawa T, Tsuji T (1987) Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu Rev Biochem 56:21–42

    Article  PubMed  CAS  Google Scholar 

  • Owen G (1972) Lysosomes, peroxisomes and bivalves. Sci Prog Oxf 60:299–318

    CAS  Google Scholar 

  • Owen G (1973) The fine structure and histochemistry of the digestive diverticula of the protobranchiate bivalve Nucula sulcata. Proc R Soc Lond Biol 183:249–264

    Google Scholar 

  • Pérez–Villar J, Hidalgo J, Velasco A (1991) Presence of terminal N–acetylgalactosamine residues in subregions of the endoplasmic reticulum is influenced by cell differentiation in culture. J Biol Chem 266:3967–3976

    Google Scholar 

  • Pipe RK, Moore MN (1986) Arylsulphatase activity associated with phenanthrene induced digestive cell deletion in the marine mussel Mytilus edulis. Histochem J 18:557–564

    Article  PubMed  CAS  Google Scholar 

  • Proszynski TJ, Simons K, Bagnat M (2004) O-glycosylation as a sorting determinant for cell surface delivery in yeast. Mol Biol Cell 15:1533–1543

    Article  PubMed  CAS  Google Scholar 

  • Renau–Piqueras J, Miragall F, Guerri C, Baguena–Cervellera R (1987) Prenatal exposure to alcohol alters the Golgi apparatus of newborn rat hepatocytes: a cytochemical study. J Histochem Cytochem 35:221–228

    PubMed  CAS  Google Scholar 

  • Ríos–Martín JJ, Díaz–Cano SJ, Rivera–Hueto F (1993) Ultrastructural distribution of lectin-binding sites on gastric superficial mucus-secreting epithelial cells. The role of Golgi apparatus in the initial glycosylation. Histochemistry 99:181–189

    Article  PubMed  Google Scholar 

  • Robinson JM, Karnovsky MJ (1983) Ultrastructural localization of several phosphatases with cerium. J Histochem Cytochem 31:1197–1208

    PubMed  CAS  Google Scholar 

  • Robledo Y (1996) Un nuevo modelo para el estudio de la compartimentalización del sistema endo-lisosómico. PhD thesis, University of the Basque Country, Bilbo (Basque Country)

  • Robledo Y, Cajaraville MP (1996) Ultrastructural and cytochemical study of the Golgi complex of molluscan (Mytilus galloprovincialis) digestive cells. Cell Tissue Res 284:449–458

    Article  PubMed  CAS  Google Scholar 

  • Robledo Y, Madrid JF, Leis O, Cajaraville MP (1997) Analysis of the distribution of glycoconjugates in the digestive gland of the bivalve mollusc Mytilus galloprovincialis by conventional and lectin histochemistry. Cell Tissue Res 288:591–602

    Article  PubMed  CAS  Google Scholar 

  • Roth J (1984) Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet cells: implications for the topology of O-glycosylation. J Cell Biol 98:399–406

    Article  PubMed  CAS  Google Scholar 

  • Roth J (1991) Localisation of glycosylation sites in the Golgi apparatus using immunolabeling and cytochemistry. J Electron Microsc Tech 17:121–131

    Article  PubMed  CAS  Google Scholar 

  • Roth J, Taatjes DJ, Weinstein J, Paulson JC, Greenwell P, Watkins WM (1986) Differential subcompartmentation of terminal glycosylation in the Golgi apparatus of intestinal absorptive and goblet cells. J Biol Chem 261:14307–14312

    PubMed  CAS  Google Scholar 

  • Roth J, Wang Y, Eckhardt AE, Hill RL (1994) Subcellular localization of the UDP-N-acety1-D-galactosamine: polypeptide N-acetylgalactosaminyl-transferase-mediated O-glycosylation reaction in the submaxillary gland. Proc Natl Acad Sci USA 91:8935–8939

    Article  PubMed  CAS  Google Scholar 

  • Röttger S, White J, Wandall HH, Olivo J–C, Stark A, Bennett EP, Whitehouse C, Berger EG, Clausen H, Nilsson T (1998) Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci 111:45–60

    PubMed  Google Scholar 

  • Sosa MA, Schmidt B, Von Figura K, Hille–Rehfeld A (1993) In vitro binding of plasma membrane-coated vesicle adaptors to the cytoplasmic domain of lysosomal acid phosphatase. J Biol Chem 268:12537–12543

    PubMed  CAS  Google Scholar 

  • Sugii S, Kabat E (1982) Further immunocytochemical studies on the combining sites of Lotus tetragonolobus and Ulex europaeus I and II lectins. Carbohydr Res 99:99–101

    Article  PubMed  CAS  Google Scholar 

  • Thorndike JM, Balch PH, Moore MN (1992) Lectin binding sites in the digestive gland of mussel. Mar Environ Res 34:69–74

    Article  CAS  Google Scholar 

  • Von Figura K (1991) Molecular recognition and targeting of lysosomal proteins. Curr Opin Cell Biol 3:642–646

    Article  PubMed  Google Scholar 

  • Von Figura K, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu Rev Biochem 55:167–193

    Article  PubMed  Google Scholar 

  • Waheed A, Gottschalk S, Hille A, Krentler C, Pohlmann R, Braulke T, Hauser H, Geuze H, Von Figura K (1988) Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells. EMBO J 7:2351–2358

    PubMed  CAS  Google Scholar 

  • Wang Y, Norgard M, Andersson G (2005) N-glycosylation influences the latency and catalytic properties of mammalian purple acid phosphatase. Arch Biochem Biophys 435:147–156

    Article  PubMed  CAS  Google Scholar 

  • Wei YD, Lee SJ, Lee KS, Gui ZZ, Yoon HJ, Kim I, Je YH, Guo X, Sohn HD, Jin BR (2005) N-glycosylation is neccesary for enzymatic activity of a beetle (Priona germari) cellulase. Biochem Biophys Res Commun 329:331–336

    Article  PubMed  CAS  Google Scholar 

  • Widnell CC (1972) Cytochemical localization of 5′–nucleotidase in subcellular fractions isolated from rat liver. I. The origin of 5′–nucleotidase activity in microsomes. J Cell Biol 52:542

    Article  PubMed  CAS  Google Scholar 

  • Wilson IBH (2002) Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol 12:569–577

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Totani K, Ohkura T, Takasaki S, Goldstein IJ, Kobata A (1987) Carbohydrate binding-properties of complex-type oligosaccharides on immobilized Datura stramonium lectin. J Biol Chem 262:1602–1607

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Prof. J. F. Madrid from the University of Murcia and to Dr. O. Leis from the University of the Basque Country for their invaluable contribution to the accomplishment of the lectin cytochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Marigómez.

Additional information

This work was funded by projects UPV 075.327–EA033/92 and UPV 075.327–EA053/93 of the University of the Basque Country and by a grant to Consolidated Research Groups (UPV/EHU). Y.R. was the recipient of a MEC–DGCYT pre-doctoral fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robledo, Y., Marigómez, I., Angulo, E. et al. Glycosylation and sorting pathways of lysosomal enzymes in mussel digestive cells. Cell Tissue Res 324, 319–333 (2006). https://doi.org/10.1007/s00441-005-0125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0125-9

Keywords

Navigation