Skip to main content

Advertisement

Log in

Propagation and functional characterization of serum-free cultured porcine hepatocytes for downstream applications

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hepatocyte transplantation is considered an alternative to whole organ transplantation. However, the availability of human cadaveric livers for the isolation of transplantation-quality hepatocytes is increasingly restricted. Xenogeneic porcine hepatocytes may therefore serve as an alternate cell ressource. The propagation of hepatocytes is often necessary to yield a sufficient cell number for downstream applications in xenotransplantation and in, for example, bioartificial liver support or pharmacological and toxicological studies. Our goal has been to propagate primary porcine hepatocytes in vitro and to determine the functional maintenance of the propagated cells. Porcine hepatocytes were cultured under serum-free conditions in the presence of hepatocyte growth factor and epidermal growth factor and passaged several times. The viability, proliferation and maintenance of liver-specific functions were determined as culture proceeded. Total cell number increased by 12-fold during four sequential passages, although the proliferative capacity was higher in primary cells and early passages as compared with late passages. Xenobiotics metabolism and urea synthesis gradually decreased with ongoing culture but could be restored by treatment with appropriate stimuli such, as β-naphthoflavone and cAMP. The expression of hepatocyte-specific genes was generally lower at the beginning than at later time-points of culture of individual passages. Porcine hepatocytes can thus be propagated in vitro. The partial loss of hepatocyte function may be restored in vitro by appropriate stimuli. This may also be achieved in a recipient liver after hepatocyte transplantation provided that the proper physiological environment for the maintenance of the differentiated hepatocyte phenotype is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arterburn LM, Zurlo J, Yager JD, Overton RM, Heifetz AH (1995) A morphological study of differentiated hepatocytes in vitro. Hepatology 22:175–187

    Article  PubMed  CAS  Google Scholar 

  • Aurich H, Koenig S, Schneider C, Walldorf J, Krause P, Fleig WE, Christ B (2005) Functional characterization of serum-free cultured rat hepatocytes for downstream transplantation applications. Cell Transplant: in press

  • Bertagnolo V, Puviani AC, Brogli M, Carini C, Brugnoli F, Colamussi ML, Bellini G, Morsiani E, Capitani S (2003) Retinoic acid maintains differentiated cell morphology and functions in long-term cultured porcine hepatocytes: obtaining functional cells for prolonged treatments with bioartificial liver. Int J Artif Organs 26:498–506

    PubMed  CAS  Google Scholar 

  • Coffman KL, Hoffman A, Rosenthal P, Demetriou A, Makowka L (1996) Neurological and psychological sequelae in transplant recipients after bridging with the bioartificial liver. Gen Hosp Psychiatry 18:20S–24S

    Article  PubMed  CAS  Google Scholar 

  • Crocker CL (1967) Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am J Med Technol 33:361–365

    PubMed  CAS  Google Scholar 

  • Di Nicuolo G, Kerkhove MP, Hoekstra R, Beld MG, Amoroso P, Battisti S, Starace M, Florio E, Scuderi V, Scala S, Bracco A, Mancini A, Chamuleau RA, Calise F (2005) No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver. Xenotransplantation 12:286–292

    Article  PubMed  Google Scholar 

  • Donato MT, Castell JV, Gomez-Lechon MJ (1999) Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: comparison with other hepatic cellular models. J Hepatol 31:542–549

    Article  PubMed  CAS  Google Scholar 

  • Fausto N (2000) Liver regeneration. J Hepatol 32:19–31

    Article  PubMed  CAS  Google Scholar 

  • Fox IJ, Roy-Chowdhury J (2004) Hepatocyte transplantation. J Hepatol 40:878–886

    Article  PubMed  CAS  Google Scholar 

  • Gorla GR, Malhi H, Gupta S (2001) Polyploidy associated with oxidative injury attenuates proliferative potential of cells. J Cell Sci 114:2943–2951

    PubMed  CAS  Google Scholar 

  • Gregory PG, Connolly CK, Toner M, Sullivan SJ (2000) In vitro characterization of porcine hepatocyte function. Cell Transplant 9:1–10

    PubMed  CAS  Google Scholar 

  • Gupta S (2000) Hepatic polyploidy and liver growth control. Semin Cancer Biol 10:161–171

    Article  PubMed  CAS  Google Scholar 

  • Hammer C (2002) Xenotransplantation for liver therapy or can porcine hepatocytes generate physiological functions sufficient for a human patient in ALF? Int J Artif Organs 25:1019–1028

    PubMed  CAS  Google Scholar 

  • Hodgkinson CP, Wright MC, Paine AJ (2000) Fibronectin-mediated hepatocyte shape change reprograms cytochrome P450 2C11 gene expression via an integrin-signaled induction of ribonuclease activity. Mol Pharmacol 58:976–981

    PubMed  CAS  Google Scholar 

  • Joly A, Desjardins JF, Fremond B, Desille M, Campion JP, Malledant Y, Lebreton Y, Semana G, Edwards-Levy F, Levy MC, Clement B (1997) Survival, proliferation, and functions of porcine hepatocytes encapsulated in coated alginate beads: a step toward a reliable bioartificial liver. Transplantation 63:795–803

    Article  PubMed  CAS  Google Scholar 

  • Jurima-Romet M, Neigh S, Casley WL (1997) Induction of cytochrome P450 3A by retinoids in rat hepatocyte culture. Hum Exp Toxicol 16:198–203

    Article  PubMed  CAS  Google Scholar 

  • Kerkhove MP van de, Hoekstra R, Chamuleau RA, Gulik TM van (2004) Clinical application of bioartificial liver support systems. Ann Surg 240:216–230

    Article  PubMed  Google Scholar 

  • Kern A, Bader A, Pichlmayr R, Sewing KF (1997) Drug metabolism in hepatocyte sandwich cultures of rats and humans. Biochem Pharmacol 54:761–772

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa Y (1987) Hormonal regulation of carbamoyl-phosphate synthetase I synthesis in primary cultured hepatocytes and Reuber hepatoma H-35. Defective regulation in hepatoma cells. Eur J Biochem 167:19–25

    Article  PubMed  CAS  Google Scholar 

  • Lorenti A, Barbich M, Hidalgo A, Hyon SH, Sorroche P, Guinle A, Schenone A, Chamoles N, Argibay P (2001) Culture of porcine hepatocytes: the dogma of exogenous matrix revisited. Artif Organs 25:546–550

    Article  PubMed  CAS  Google Scholar 

  • Lubet RA, Nims RW, Mayer RT, Cameron JW, Schechtman LM (1985) Measurement of cytochrome P-450 dependent dealkylation of alkoxyphenoxazones in hepatic S9s and hepatocyte homogenates: effects of dicumarol. Mutat Res 142:127–131

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Levy G, Ding J, Qi J, Chakbrati S, Garcia BM, Phillips MJ, Kumar N, Friend P, Noble L, Macdonald J, Zhong R, Grant D (2002) HDAF transgenic pig livers are protected from hyperacute rejection during ex vivo perfusion with human blood. Xenotransplantation 9:36–44

    Article  PubMed  Google Scholar 

  • Matsue H (1996) Metabolic evaluation of cultured porcine hepatocyte monolayers in human plasma from hepatic failure patients-basic study on development of a bioreactor in hybrid artificial liver. Hokkaido Igaku Zasshi 71:543–555

    PubMed  CAS  Google Scholar 

  • Mitaka T, Norioka K, Mochizuki Y (1993) Redifferentiation of proliferated rat hepatocytes cultured in L15 medium supplemented with EGF and DMSO. In Vitro Cell Dev Biol Anim 29A:714–722

    Article  PubMed  CAS  Google Scholar 

  • Müller P, Aurich H, Wenkel R, Schaffner I, Wolff I, Walldorf J, Fleig WE, Christ B (2004) Serum-free cryopreservation of porcine hepatocytes. Cell Tissue Res 317:45–56

    Article  PubMed  Google Scholar 

  • Naik S, Trenkler D, Santangini H, Pan J, Jauregui HO (1996) Isolation and culture of porcine hepatocytes for artificial liver support. Cell Transplant 5:107–115

    Article  PubMed  CAS  Google Scholar 

  • Nebes VL, Morris SM Jr (1988) Regulation of messenger ribonucleic acid levels for five urea cycle enzymes in cultured rat hepatocytes. Requirements for cyclic adenosine monophosphate, glucocorticoids, and ongoing protein synthesis. Mol Endocrinol 2:444–451

    PubMed  CAS  Google Scholar 

  • Ohashi K, Park F, Kay MA (2001) Hepatocyte transplantation: clinical and experimental application. J Mol Med 79:617–630

    Article  PubMed  CAS  Google Scholar 

  • Overturf K, al-Dhalimy M, Ou CN, Finegold M, Grompe M (1997) Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol 151:1273–1280

    PubMed  CAS  Google Scholar 

  • Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, Chapman LE, Lockey C, Onions D, Otto E (1999) Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 285:1236–1241

    CAS  Google Scholar 

  • Richert L, Binda D, Hamilton G, Viollon-Abadie C, Alexandre E, Bigot-Lasserre D, Bars R, Coassolo P, LeCluyse E (2002) Evaluation of the effect of culture configuration on morphology, survival time, antioxidant status and metabolic capacities of cultured rat hepatocytes. Toxicol In Vitro 16:89–99

    Article  PubMed  CAS  Google Scholar 

  • Runge DM, Runge D, Foth H, Strom SC, Michalopoulos GK (1999) STAT 1alpha/1beta, STAT 3 and STAT 5: expression and association with c-MET and EGF-receptor in long-term cultures of human hepatocytes. Biochem Biophys Res Commun 265:376–381

    Article  PubMed  CAS  Google Scholar 

  • Runge D, Runge DM, Jager D, Lubecki KA, Beer Stolz D, Karathanasis S, Kietzmann T, Strom SC, Jungermann K, Fleig WE, Michalopoulos GK (2000) Serum-free, long-term cultures of human hepatocytes: maintenance of cell morphology, transcription factors, and liver-specific functions. Biochem Biophys Res Commun 269:46–53

    Article  PubMed  CAS  Google Scholar 

  • Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, Irgang M, Kraemer M, Puhl G, Frank J, Muller AR, Steinmuller T, Denner J, Neuhaus P, Gerlach JC (2003) Clinical extracorporeal hybrid liver support-phase I study with primary porcine liver cells. Xenotransplantation 10:460–469

    Article  PubMed  CAS  Google Scholar 

  • Schmucker DL (1990) Hepatocyte fine structure during maturation and senescence. J Electron Microsc Tech 14:106–125

    Article  PubMed  CAS  Google Scholar 

  • Seglen PO (1997) DNA ploidy and autophagic protein degradation as determinants of hepatocellular growth and survival. Cell Biol Toxicol 13:301–315

    Article  PubMed  CAS  Google Scholar 

  • Sheil AG (2002) Xenogeneic bioartificial liver support: where are we now? Transplant Proc 34:2493–2495

    Article  PubMed  CAS  Google Scholar 

  • Shoda T, Mitsumori K, Onodera H, Toyoda K, Uneyama C, Takada K, Hirose M (2000) Liver tumor-promoting effect of beta-naphthoflavone, a strong CYP 1A1/2 inducer, and the relationship between CYP 1A1/2 induction and Cx32 decrease in its hepatocarcinogenesis in the rat. Toxicol Pathol 28:540–547

    Article  PubMed  CAS  Google Scholar 

  • Sigal SH, Gupta S, Gebhard DF Jr, Holst P, Neufeld D, Reid LM (1995) Evidence for a terminal differentiation process in the rat liver. Differentiation 59:35–42

    Article  PubMed  CAS  Google Scholar 

  • Strain AJ (1999) Ex vivo liver cell morphogenesis: one step nearer to the bioartificial liver? Hepatology 29:288–290

    Article  PubMed  CAS  Google Scholar 

  • Walldorf J, Aurich H, Cai H, Runge D, Christ B, Strom SC, Fleig WE (2004) Expanding hepatocytes in vitro before cell transplantation: donor age-dependent proliferative capacity of cultured human hepatocytes. Scand J Gastroenterol 39:584–593

    Article  PubMed  CAS  Google Scholar 

  • Watanabe FD, Mullon CJ, Hewitt WR, Arkadopoulos N, Kahaku E, Eguchi S, Khalili T, Arnaout W, Shackleton CR, Rozga J, Solomon B, Demetriou AA (1997) Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial. Ann Surg 225:484–494

    Article  PubMed  CAS  Google Scholar 

  • Watanabe FD, Arnaout WS, Ting P, Navarro A, Khalili T, Kamohara Y, Kahaku E, Rozga J, Demetriou AA (1999) Artificial liver. Transplant Proc 31:371–373

    Article  PubMed  CAS  Google Scholar 

  • Wegner H, Schareck W, Bayer-Helms H, Gebhardt R (1992) Different proliferative potential of rat and pig hepatocytes in pure primary culture and coculture. Eur J Cell Biol 58:411–417

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of S. Ebensing and M. Hempel, First Department of Internal Medicine, University of Halle/Saale is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schneider.

Additional information

This study was supported by grants to B. Christ from the German Ministry of Education and Research (01 ZZ 0109 and NBL3-NG4) as well as by grants from the Federal State of Saxonia-Anhalt through the Wilhelm-Roux-Program at the Medical Faculty of the Martin-Luther-University of Halle-Wittenberg to B. Christ (09/07 and 04/03).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, C., Aurich, H., Wenkel, R. et al. Propagation and functional characterization of serum-free cultured porcine hepatocytes for downstream applications. Cell Tissue Res 323, 433–442 (2006). https://doi.org/10.1007/s00441-005-0089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0089-9

Keywords

Navigation