Skip to main content
Log in

A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Using the combined Golgi-electron microscopy technique, we have determined the three-dimensional dendritic fields of the short visual fibres (svf 1–3) and first-order interneurons or L-fibres (L1-4) within the first optic ganglion (lamina) of the nocturnal bee Megalopta genalis. Serial cross sections have revealed that the svf type 2 branches into one adjacent neural unit (cartridge) in layer A, the most distal of the three lamina layers A, B and C. All L-fibres, except L1-a, exhibit wide lateral branching into several neighbouring cartridges. L1-b shows a dendritic field of seven cartridges in layers A and C, dendrites of L2 target 13 cartridges in layer A, L3 branches over a total of 12 cartridges in layer A and three in layer C and L4 has the largest dendritic field size of 18 cartridges in layer C. The number of cartridges reached by the respective L-fibres is distinctly greater in the nocturnal bee than in the worker honeybee and is larger than could be estimated from our previous Golgi-light microscopy study. The extreme dorso-ventrally oriented dendritic field of L4 in M. genalis may, in addition to its potential role in spatial summation, be involved in edge detection. Thus, we have shown that the amount of lateral spreading present in the lamina provides the anatomical basis for the required spatial summation. Theoretical and future physiological work should further elucidate the roles that this lateral spreading plays to improve dim-light vision in nocturnal insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Burgett DM, Sukumalanand P (2000) Flight activity of Xylocopa (Nyctomelitta) tranquebarica: a night flying carpenter bee (Hymenoptera: Apidae). J Apic Res 39:75–83

    Google Scholar 

  • Cockerell TDA (1923) Two nocturnal bees and a minute Perdita. Am Mus Novit 66:1–4

    Google Scholar 

  • Cronin TW, Jarvilehto M, Weckstrom M, Lall AB (2000) Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J Comp Physiol [A] 186:1–12

    Article  PubMed  CAS  Google Scholar 

  • Greiner B, Ribi WA, Wcislo WT, Warrant EJ (2004a) Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell Tissue Res 318:429–437

    Article  PubMed  Google Scholar 

  • Greiner B, Ribi WA, Warrant EJ (2004b) Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res 316:377–390

    Article  PubMed  Google Scholar 

  • Kelber A, Balkenius A, Warrant EJ (2002) Scotopic colour vision in nocturnal hawkmoths. Nature 419:922–925

    Article  PubMed  CAS  Google Scholar 

  • Kerfoot WB (1967) The lunar periodicity of Sphecodogastra texana, a nocturnal bee. Anim Behav 15:479–486

    Article  PubMed  CAS  Google Scholar 

  • Kien J, Menzel R (1977a) Chromatic properties of interneurons in the optic lobes of the bee. I. Broad band neurons. J Comp Physiol 113:17–34

    Article  Google Scholar 

  • Kien J, Menzel R (1977b) Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J Comp Physiol 113:35–53

    Article  Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol 7/6B. Vision in invertebrates. Springer, Berlin Heidelberg New York, pp 471–592

    Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, New York

    Google Scholar 

  • Lythgoe NJ (1979) The ecology of vision. Oxford University Press, New York

    Google Scholar 

  • Menzel R (1974) Spectral sensitivity of monopolar cells in the bee lamina. J Comp Physiol 93:337–346

    Article  Google Scholar 

  • Menzel R, Blakers M (1976) Colour receptors in the bee eye-morphology and spectral sensitivity. J Comp Physiol 108:11–33

    Article  Google Scholar 

  • Nilsson D-E (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie R (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 30–73

    Google Scholar 

  • Ribi WA (1976) The first optic ganglion of the bee. II. Topographical relationships of the monopolar cells within and between cartridges. Cell Tissue Res 171:359–373

    Article  PubMed  CAS  Google Scholar 

  • Ribi WA (1981) The first optic ganglion of the bee. IV. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurones. Cell Tissue Res 215:443–464

    Article  PubMed  CAS  Google Scholar 

  • Ribi WA (1983a) Combined Golgi and electron microscopy techniques. In: Miller TA (ed) Experimental entomology, vol II: neuroanatomical techniques. Springer, Berlin Heidelberg New York, pp 1–18

    Google Scholar 

  • Ribi WA (1983b) Electron microscopy of Golgi-impregnated neurons. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York Tokyo, pp 1–18

    Google Scholar 

  • Ribi WA (1987a) Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus aegeus D. Cell Tissue Res 247:393–407

    Article  Google Scholar 

  • Ribi WA (1987b) The structural basis of information processing in the visual system of the bee. In: Menzel R, Mercer A (eds) Neurobiology and behavior of honeybees. Springer, Berlin Heidelberg New York, pp 130–140

    Google Scholar 

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge

    Google Scholar 

  • Warrant EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vis Res 39:1611–1630

    Article  PubMed  CAS  Google Scholar 

  • Warrant EJ (2004) Vision in the dimmest habitats on earth. J Comp Physiol [A] 190:765–789

    Article  Google Scholar 

  • Warrant EJ, McIntyre PD (1993) Arthropod eye design and the physical limits to spatial resolving power. Prog Neurobiol 40:413–461

    Article  PubMed  CAS  Google Scholar 

  • Warrant E, Porombka T, Kirchner WH (1996) Neural image enhancement allows honeybees to see at night. Proc R Soc Lond [Biol] 263:1521–1526

    Article  Google Scholar 

  • Warrant EJ, Kelber A, Gislen A, Greiner B, Ribi W, Wcislo WT (2004) Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 14:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Waters DA (2003) Bats and moths: what is there left to learn? Physiol Entomol 28:237–250

    Article  Google Scholar 

  • Wcislo WT, Arneson L, Roesch K, Gonzales V, Smith A, Fernández H (2004) The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? Biol J Linn Soc 83:377–387

    Article  Google Scholar 

Download references

Acknowledgements

We thank Megan O'Connor and two anonymous reviewers for critically reading the manuscript, Victor Gonzales, Andre Riveros and Mark Holdstock for assistance with fieldwork, William Wcislo and the staff of the Smithsonian Tropical Research Institute (STRI) for their help and the Autoridad Nacional del Ambiente of the Republic of Panama for permission to export bees. The histological work was partly carried out by B.G. at the Center for Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Greiner.

Additional information

B.G. is grateful for grants from the Royal Physiographic Society, the Per Westlings Fond, the Foundation of Dagny and Eilert Ekvall and the Royal Swedish Academy of Sciences. E.J.W. would like to thank the Smithsonian Tropical Research Insitute, the Swedish Research Council, the Crafoord Foundation, the Wenner-Gren Foundation and the Royal Physiographic Society of Lund for their ongoing support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner, B., Ribi, W.A. & Warrant, E.J. A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis . Cell Tissue Res 322, 313–320 (2005). https://doi.org/10.1007/s00441-005-0034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0034-y

Keywords

Navigation