Skip to main content

Advertisement

Log in

Reissner’s fiber formation depends on developmentally regulated factors extrinsic to the subcommissural organ

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Reissner’s fiber (RF) is a threadlike structure present in the third and fourth ventricles and in the central canal of the spinal cord. RF develops by the assembly of glycoproteins released into the cerebrospinal fluid (CSF) by the subcommissural organ (SCO). SCO cells differentiate early during embryonic development. In chick embryos, the release into the CSF starts at embryonic day 7 (E7). However, RF does not form until E11, suggesting that a factor other than release is required for RF formation. The aim of the present investigation was to establish whether the factor(s) triggering RF formation is (are) intrinsic or extrinsic to the SCO itself. For this purpose, SCO explants from E13 chick embryos (a stage at which RF has formed) were grafted at two different developmental stages. After grafting, host embryos were allowed to survive for 6–7 days, reaching E9 (group 1) and E13 (group 2). In experimental group 1, the secretion released by the grafted SCOs never formed a RF; instead, it aggregated as a flocculent material. In experimental group 2, grafted SCO explants were able to develop an RF-like structure, similar to a control RF. These results suggest that the factor triggering RF formation is not present in the SCO itself, since E13 SCO secretion forms an RF in E13 brains but never develops RF-like structures when placed in earlier developmental environments. Furthermore, the glycoproteins released by implanted SCOs bind specifically to several structures: the apical portion of the mesencephalic floor plate and the choroid plexus of the third and fourth ventricles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Castaneyra-Perdomo A, Meyer G, Ferres-Torres R (1983) Development of the subcommissural organ in the albino mouse (a Golgi study). J Hirnforsch 24:363–370

    PubMed  Google Scholar 

  • Chouaf L, Didier-Bazes M, Hardin H, Aguera M, Fevre-Montange M, Voutsinos B, Belin MF (1991) Developmental expression of glial markers in ependymocytes of the rat subcommissural organ: role of the environment. Cell Tissue Res 266:553–561

    Article  PubMed  Google Scholar 

  • Cifuentes M, Rodriguez EM, Hernandez S, Perez J, Peruzzo B, Perez-Figares JM, Fernandez-Llebrez P (1995) Antibody-mediated lysis of the bovine subcommissural organ maintained in culture. Exp Brain Res 107:9–51

    Article  PubMed  Google Scholar 

  • Brio MA del, Riera P, Munoz RI, Montecinos H, Rodriguez EM (2000) The metencephalic floor plate of chick embryos expresses two secretory glycoproteins homologous with the two glycoproteins secreted by the subcommissural organ. Histochem Cell Biol 113:415–426

    PubMed  Google Scholar 

  • Brio MA del, Riera P, Peruzzo B, Rodriguez EM (2001) Hindbrain floor plate of the rat: ultrastructural changes occurring during development. Microsc Res Tech 52:615–626

    Article  PubMed  Google Scholar 

  • Fernandez-Llebrez P, Lopez-Avalos MD, Mota MD, Cifuentes M, Andrades JA, Grondona JM, Perez J, Perez-Figares JM, Rodriguez EM (1996) Secretory glycoproteins of the roof and floor plates and their rostral derivatives, the subcommissural and flexural organs, in the developing central nervous system of vertebrates. An immunocytochemical study. Int J Dev Biol Suppl 1:151S-152S

    Google Scholar 

  • Gato A, Martin P, Alonso MI, Martin C, Pulgar MA, Moro JA (2004) Analysis of cerebro-spinal fluid protein composition in early developmental stages in chick embryos. J Exp Zool A Comp Exp Biol 301:280–289

    Article  Google Scholar 

  • Grondona JM, Perez-Martin M, Cifuentes M, Perez J, Estivill-Torrus G, Perez-Figares JM, Fernandez-Llebrez P, Rodriguez EM (1998) Neuraminidase injected into the cerebrospinal fluid impairs the assembly of the glycoproteins secreted by the subcommissural organ preventing the formation of Reissner’s fiber. Histochem Cell Biol 109:391–398

    Article  PubMed  Google Scholar 

  • Guinazu MF, Richter HG, Rodriguez EM (2002) Bovine floor plate explants secrete SCO-spondin. Cell Tissue Res 308:177–191

    Article  PubMed  Google Scholar 

  • Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–91

    Article  Google Scholar 

  • Irigoin C, Rodriguez EM, Heinrichs M, Frese K, Herzog S, Oksche A, Rott R (1990) Immunocytochemical study of the subcommissural organ of rats with induced postnatal hydrocephalus. Exp Brain Res 82:384–392

    Article  PubMed  Google Scholar 

  • Karoumi A, Croisille Y, Croisille F, Meiniel R, Belin MF, Meiniel A (1990) Glycoprotein synthesis in the subcommissural organ of the chick embryo. II. An immunochemical study. J Neural Transm Gen Sect 80:203–212

    Article  PubMed  Google Scholar 

  • Kimble JE, Mollgard K (1975) Subcommissural organ-associated neurons in fetal and neonatal rabbit. Cell Tissue Res 159:195–204

    Article  PubMed  Google Scholar 

  • Lehmann W, Sterba G (1989) Tissue culture of rat subcommissural organ in vitro. Biomed Res 10(Suppl 30):11–18

    Google Scholar 

  • Lehmann W, Sterba G (1993) The subcommissural organ in vitro. In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 133–140

    Google Scholar 

  • Lehmann W, Sterba G, Wobus AM (1989) Primary culture of the mouse subcomissural organ in vitro. Acta Zool 70:199–203

    Google Scholar 

  • Lehmann W, Naumann W, Wagner U (1993) Tissue culture of bovine subcommissural organ. Anat Embryol 187:505–514

    Article  PubMed  Google Scholar 

  • Leonhardt H (1980) Ependym und circumventrikuläre Organe. In: Oksche A, Vollrath L (eds) Neuroglia I (Handbuch der Mikroskopischen Anatomie des Menschen, vol IV, part 10). Springer, Berlin Heidelberg New York, pp 176–665

    Google Scholar 

  • Lichtenfeld J, Viehweg J, Schützenmeister J, Naumann WW (1999) Reissner’s substance expressed as a transient pattern in vertebrate floor plate. Anat Embryol 200:161–174

    Article  PubMed  Google Scholar 

  • Lopez-Avalos MD, Cifuentes M, Grondona JM, Miranda E, Perez J, Fernandez-Llebrez P (1997) Rostral floor plate (flexural organ) secretes glycoproteins immunologically similar to subcommissural organ glycoproteins in dogfish (Scyliorhinus canicula) embryos. Brain Res Dev Brain Res 102:69–75

    Article  PubMed  Google Scholar 

  • Marcinkiewicz M, Bouchaud C (1983) The ependymal secretion of the fetal and adult rat subcommissural organ. Morphological aspects linked to the synthesis, storage and release of the secretory products. Biol Cell 48:47–52

    PubMed  Google Scholar 

  • Marcinkiewicz M, Bouchaud C (1986) Formation and maturation of axo-glandular synapses and concomitant changes in the target cells of the rat subcommissural organ. Biol Cell 56:57–65

    PubMed  Google Scholar 

  • Meiniel A (2001) SCO-spondin, a glycoprotein of the subcommissural organ/Reissner’s fiber complex: evidence of a potent activity on neuronal development in primary cell cultures. Microsc Res Tech 52:484–495

    Article  PubMed  Google Scholar 

  • Meiniel R, Didier R, Molat JL, Meiniel A (1993) Developmental aspects of the subcommissural organ: an approach using lectins and monoclonal antibodies. In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 51–59

    Google Scholar 

  • Miranda E, Almonacid JA, Rodriguez S, Perez J, Hein S, Cifuentes M, Fernandez-Llebrez P, Rodriguez EM (2001) Searching for specific binding sites of the secretory glycoproteins of the subcommissural organ. Microsc Res Tech 52:541–551

    PubMed  Google Scholar 

  • Møllgard K (1972) Histochemical investigations on the human foetal subcommissural organ. I. Carbohydrates and mucosubstances, proteins and nucleoproteins, esterase, acid and alkaline phosphatase. Histochemie 32:31–48

    PubMed  Google Scholar 

  • Naumann W (1986) Immunhistochemische Untersuchungen zur Ontogenese des Subcommissuralorgans. Acta Histochem Suppl 33:265–272

    PubMed  Google Scholar 

  • Naumann W, Müller G, Kloss P (1987) Immunoreactive glycoproteins of the subcommissural organ in the embryonic stages of the vertebrate brain. Wiss Z Karl-Marx-Univ Leipzig Math-Naturwiss R 36:17–20

    Google Scholar 

  • Nualart F, Hein S (2001) Biosynthesis and molecular biology of the secretory proteins of the subcommissural organ. Microsc Res Tech 52:468–483

    PubMed  Google Scholar 

  • Nualart F, Hein S, Rodriguez EM, Oksche O (1991) Identification and partial characterization of the secretory glycoproteins of the bovine subcommissural organ-Reissner’s fiber complex. Evidence for the existence of two precursor forms.Brain Res Mol Brain Res 11:227–238

    PubMed  Google Scholar 

  • Oksche A (1956) Funktionelle histologische Untersuchungen über die Organe des Zwischenhirndaches der Chordaten. Anat Anz 102:404–419

    PubMed  Google Scholar 

  • Oksche A (1961) Vergleichende Untersuchungen über die sekretorische Aktivität der Subkommissuralorgans und den Gliacharakter seiner Zellen. Z Zellforsch Mikrosk Anat 54:549–612

    PubMed  Google Scholar 

  • Oksche A (1969) The subcommissural organ. J Neurovisc Relat Suppl 9:111–139

    Google Scholar 

  • Olsson R (1958) Studies on the subcommissural organ. Acta Zool 39:71–102

    Google Scholar 

  • Olsson R (1961) Subcommissural ependyma and pineal organ development in human fetuses. Gen Comp Endocrinol 1:117–123

    PubMed  Google Scholar 

  • Richter HG, Munoz RI, Millan CS, Guinazu MF, Yulis CR, Rodriguez EM (2001) The floor plate cells from bovine express the mRNA encoding for SCO-spondin and its translation products. Brain Res Mol Brain Res 93:137–147

    PubMed  Google Scholar 

  • Rodriguez EM, Oksche A, Hein S, Rodriguez S, Yulis R (1984) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237:427–441

    PubMed  Google Scholar 

  • Rodriguez EM, Rodriguez S, Schoebitz K, Yulis CR, Hoffmann P, Manns V, Oksche A (1989) Light- and electron-microscopic investigation of the rat subcommissural organ grafted under the kidney capsule, with particular reference to immunocytochemistry and lectin histochemistry. Cell Tissue Res 258:499–514

    PubMed  Google Scholar 

  • Rodriguez S, Rodriguez EM, Jara P, Peruzzo B, Oksche A (1990) Single injection into the cerebrospinal fluid of antibodies against the secretory material of the subcommissural organ reversibly blocks formation of Reissner’s fiber: immunocytochemical investigations in the rat. Exp Brain Res 81:113–124

    PubMed  Google Scholar 

  • Rodriguez EM, Oksche A, Hein S, Yulis CR (1992) Cell biology of the subcommissural organ. Int Rev Cytol 135:39–121

    PubMed  Google Scholar 

  • Rodriguez EM, Jara P, Richter H, Montecinos H, Flandez B, Wiegand R, Oksche A (1993) Evidence for the release of CSF-soluble secretory material from the subcommissural organ, with particular reference to the situation in the human. In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 121–131

    Google Scholar 

  • Rodriguez EM, Brio Leon MA del, Riera P, Menendez J, Schoebitz K (1996) The floor plate of the hindbrain is a highly specialized gland: immunocytochemical and ultrastructural characteristics. Brain Res Dev Brain Res 97:153–168

    PubMed  Google Scholar 

  • Rodriguez EM, Rodriguez S, Hein S (1998) The subcommissural organ. Microsc Res Tech 41:98–123

    PubMed  Google Scholar 

  • Rodriguez S, Navarrete EH, Vio K, Gonzalez C, Schobitz K, Rodriguez EM (1999) Isograft and xenograft of the subcommissural organ into the lateral ventricle of the rat and the formation of Reissner’s fiber. Cell Tissue Res 296:457–469

    PubMed  Google Scholar 

  • Rodriguez EM, Oksche A, Montecinos H (2001) Human subcommissural organ, with particular emphasis on its secretory activity during the fetal life. Microsc Res Tech 52:573–590

    PubMed  Google Scholar 

  • Sargent PE (1900) Reissner‘s fibre in the canalis centralis of vertebrates. Anat Anz 17:33–44

    Google Scholar 

  • Schoebitz K, Garrido O, Heinrichs M, Speer L, Rodriguez EM (1986) Ontogenical development of the chick and duck subcommissural organ: an immunocytochemical study. Histochemistry 84:1–40

    PubMed  Google Scholar 

  • Schoebitz K, Rodriguez EM, Garrido O, Brio MA del (1993) Ontogenetic development of the subcommissural organ with reference to the flexural organ. In: Oksche A, Rodriguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 41–49

    Google Scholar 

  • Schoebitz K, Gonzalez C, Peruzzo B, Yulis CR, Rodriguez EM (2001) Organ culture of the bovine subcommissural organ: evidence for synthesis and release of the secretory material. Microsc Res Tech 52:496–509

    PubMed  Google Scholar 

  • Sheffield JB, Graff D (1991) Extracellular proteases in developing chick neural retina. Exp Eye Res 52:733–741

    PubMed  Google Scholar 

  • Sterba G, Ermisch A, Freyer K, Hartmann G (1967) Incorporation of sulphur-35 into the subcommissural organ and Reissner’s fibre. Nature 216:504

    PubMed  Google Scholar 

  • Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    PubMed  Google Scholar 

  • Vaillant C, Didier-Bazes M, Hutter A, Belin MF, Thomasset N (1999) Spatiotemporal expression patterns of metalloproteinases and their inhibitors in the postnatal developing rat cerebellum. J Neurosci 19:4994–5004

    PubMed  Google Scholar 

  • Wingstrand KG (1953) Neurosecretion and antidiuretic activity in chick embryos with remarks on the subcommissural organ. Ark Zool 6:41–67

    Google Scholar 

  • Wislocki GB, Roth WD (1958) Selective staining of the human subcommissural organ. Anat Rec 130:125–133

    PubMed  Google Scholar 

  • Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    PubMed  Google Scholar 

  • Yulis CR, Mota MD, Andrades JA, Rodriguez S, Peruzzo B, Mancera JM, Ramirez P, Garrido M, Perez-Figarez JM, Fernandez-Llebrez P, Rodriguez EM (1998) Floor plate and the subcommissural organ are the source of secretory compounds of related nature: comparative immunocytochemical study. J Comp Neurol 392:19–34

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Grondona.

Additional information

C. Hoyo-Becerra and M. D. López-Avalos contributed equally to this study and should be considered as joint first authors.

C. Hoyo-Becerra was the recipient of a predoctoral fellowship (PFPI) from the Ministerio de Ciencia y Tecnología (Spain). This work was supported by grants from DGICYT (BFI2003-03348; Spain) and FIS (01/0948; Spain), FIS (01–0948, PI021517; Spain) and ISCIII (red CIEN, nodo Fundación Carlos Haya).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyo-Becerra, C., López-Avalos, M.D., Alcaide-Gavilán, M. et al. Reissner’s fiber formation depends on developmentally regulated factors extrinsic to the subcommissural organ. Cell Tissue Res 321, 429–441 (2005). https://doi.org/10.1007/s00441-004-1040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-1040-1

Keywords

Navigation