Skip to main content
Log in

Ontogeny of the antennal glands in the crayfish Astacus leptodactylus (Crustacea, Decapoda): anatomical and cell differentiation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The ontogeny of the antennal glands was studied during the embryonic and post-embryonic development of Astacus leptodactylus. The future glands arising from undifferentiated columnar cells were detectable at the metanauplius stage EI 150 μm (EI: eye index; approximately 440 μm at hatching). The tubule and labyrinth differentiated in embryos at EI 190 μm, and the bladder and coelomosac at EI 250 μm. At EI 350 μm, the tubule lengthened and divided into proximal and distal sub-regions. In later stages, the gland retained the same morpho-anatomy but the differentiation and size of each part increased. The cells of the coelomosac displayed the cytological features of podocytes in late embryonic development at EI 440 μm. Only small apical microvilli and a few mitochondria were observable in the labyrinth cells at EI 250 μm; by EI 440 μm, these cells presented well-shaped apical microvilli, formed bodies, basal infoldings and mitochondria. In the cells of the tubules and bladder, mitochondria and basal infoldings occurred at EI 440 μm and EI 250 μm, respectively. The differentiation of the tubules and bladder cells suggested that they were involved in active transport at EI 440 μm. Following hatching, the differentiation of the cells and the size of the glands increased. The ontogeny of the antennal glands thus starts in early embryos, the specific cellular functional features being differentiated in the various parts of the glands by EI 440 μm. The antennal glands are probably functional just before hatching, i.e., before the juveniles are confronted with the low osmolality of freshwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aladin NV, Potts WTW (1995) Osmoregulatory capacity of the Cladocera. J Comp Physiol [B] 164:671–683

    Google Scholar 

  • Anderson E, Beams HW (1956) Light and electron microscopic studies on the cells of the labyrinth in the “green gland” of Cambarus sp. Iowa Acad Sci 63:681–685

    Google Scholar 

  • Anger K (2001) The biology of the decapod crustacean larvae. Balkema, Lisse, pp 1–420

    Google Scholar 

  • Barradas C, Dunel-Erb S, Lignon J, Péqueux A (1999a) Superimposed morphofunctional study of ion regulation and respiration in single gill filaments of the crayfish Astacus leptodactylus. J Crust Biol 19:14–25

    Google Scholar 

  • Barradas C, Wilson JM, Dunel-Erb S (1999b) Na+,K+-ATPase activity and immunocytochemical labelling in podoranchial filament and lamina of the freshwater crayfish Astacus leptodactylus Eschscholtz: evidence for the existence of sodium transport in the filaments. Tissue Cell 31:523–528

    Article  CAS  Google Scholar 

  • Beams HW, Anderson E, Press N (1956) Light and electron microscopic studies on the cells of the distal portion of the crayfish nephron tubule. Cytologia 21:50–57

    Google Scholar 

  • Bielawski J (1964) Chloride transport and water intake into isolated gills of crayfish. Comp Biochem Physiol 13:423–432

    Article  CAS  PubMed  Google Scholar 

  • Charmantier G, Charmantier-Daures M (1994) Ontogeny of osmoregulation and salinity tolerance in the isopod crustacean Sphaeroma serratum. Mar Ecol Prog Ser 114:93–102

    Google Scholar 

  • Charmantier G, Christophe H, Lignot JH, Charmantier-Daures M (2001) Ecophysiological adaptation to salinity throughout a life cycle: a review in homarid lobsters. J Exp Biol 204:967–977

    CAS  PubMed  Google Scholar 

  • Drach P, Tchernigovtzeff C (1967) Sur la méthode de détermination des stades d’intermue et son application générale aux crustacés. Vie Milieu 18:595–610

    Google Scholar 

  • Dunel-Erb S, Barradas C, Lignon J (1997) Morphological evidence for the existence of two distinct types of mitochondria rich cells in the gills of the crayfish Astacus leptodactylus Eschscholtz. Acta Zool 78:195–203

    Google Scholar 

  • Edwards JG (1928) Studies on aglomerular and glomerular kidneys. Am J Anat 42:75

    Google Scholar 

  • Fuller EG, Highison GJ, Brown F, Bayer C (1989) Ultrastructure of the crayfish antennal gland revealed by scanning and transmission electron microscopy combined with ultrasonic microdissection. J Morphol 200:9–15

    Google Scholar 

  • Holdich DM, Horlioglu MM, Firkins I (1997) Salinity adaptations of crayfish in British waters with particular reference to Austropotamobius pallipes, Astacus leptodactylus and Pacifastacus leniusculus. Estuar Coast Shelf Sci 44:147–154

    Article  Google Scholar 

  • Holliday CW, Miller DS (1984) Cellular mechanisms of organic anion transport in crustacean renal tissue. Am Zool 24:275–284

    CAS  Google Scholar 

  • Hubschman JH (1971) Transient larval glands in Palamonetes. In: Crisp DJ (ed) Fourth European Marine Biology Symposium. Cambridge University Press, New York, pp 295–300

    Google Scholar 

  • Ischiguro J (1975) Fine structure of the antennal gland of the crayfish Procambarus clarkii. J Electron Microsc 24:191

    Google Scholar 

  • Johnson PT (1980). Histology of the blue crab Callinectes sapidus. Praeger, New York, pp 1–440

    Google Scholar 

  • Kamemoto FI, Ono JK (1968) Urine flow determination by continuous collection in the crayfish Procambarus clarkii. Comp Biochem Physiol 27:851–857

    Article  Google Scholar 

  • Khodabandeh S, Kutnik M, Aujoulat F, Charmantier G, Charmantier-Daures M (2004) Ontogeny of the antennal glands in the crayfish, Astacus leptodactylus (Crustacea, Decapoda): immunolocalization of Na+,K+-ATPase. Cell Tissue Res DOI 10.1007/s00441-004-0970-y

  • Kirschner LB, Wagner S (1965) The site and permeability of the filtration locus in the crayfish antennal gland. J Exp Biol 43:385–395

    Google Scholar 

  • Kümmel G (1964) Morphological indication of a filtration process in the antennal gland of Cambarus affinis. Naturwissenschaften 51:200

    Google Scholar 

  • Lopez J, Cuesta N, Martinez A, Montuenga L, Cuttitta F (1999) Proadrenomedullin N-terminal 20 peptide (PAMP) immunoreactivity in vertebrate juxtaglomerular granular cells identified by both light and electron microscopy. Gen Comp Endocrinol 116:192–203

    Article  CAS  PubMed  Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding materials. J Biophys Biochem Cytol 9:409–414

    Article  CAS  PubMed  Google Scholar 

  • Mantel LH, Farmer LL (1983) Osmotic and ionic regulation. In: Bliss DE (ed) The biology of Crustacea. Internal anatomy and physiological regulations. Academic Press, London, pp 53–161

    Google Scholar 

  • Martoja R, Martoja-Pierson M (1967) Initiation aux techniques de l’histologie animale. Masson et Cie, Paris, p 345

    Google Scholar 

  • Miyawaki M, Ukeshima A (1967) On the ultrastructure of the antennal gland epithelium of the crayfish, Procambarus clarkii. Kumamoto J Sci 8:59–73

    Google Scholar 

  • Miyawaki M, Ura T (1969) Absorption and secretion of experimentally injected protein silver by kidney cells of the crayfish. Ann Zool Jpn 42:56–62

    Google Scholar 

  • Morrit D, Spicer JI (1995) Changes in the pattern of osmoregulation in the brackish water amphipod Gammarus duebeni Lilljeborg (Crustacea) during embryonic development. J Exp Zool 273:271–281

    Google Scholar 

  • Morrit D, Spicer JI (1996a) Developmental ecophysiology of the beachflea Orchestia gammarellus (Pallas) (Crustacea: Amphipoda). I. Female control of the embryonic environment. J Exp Mar Biol Ecol 207:191–203

    Article  Google Scholar 

  • Morrit D, Spicer JI (1996b) Developmental ecophysiology of the beachflea Orchestia gammarellus (Pallas) (Crustacea: Amphipoda). Embryonic osmoregulation. J Exp Mar Biol Ecol 207:205–216

    Article  Google Scholar 

  • Morrit D, Spicer JI (1999) Developmental ecophysiology of the beachflea Orchestia gammarellus (Pallas) (Crustacea: Amphipoda: Talitridae) III. Physiological competency as a possible explanation for timing of hatchling release. J Exp Mar Biol Ecol 232:275–283

    Article  Google Scholar 

  • Péqueux A (1995) Osmotic regulation in crustaceans. J Crust Biol 15:1–60

    Google Scholar 

  • Perkins HC (1972) Developmental rates at various temperatures of embryos of the northern lobster (Homarus americanus Milne-Edwards). Fish Bull 70:95–99

    Google Scholar 

  • Peterson DR, Loizzi RF (1973) Regional cytology and cytochemistry of the crayfish kidney tubule. J Morphol 141:133–146

    CAS  PubMed  Google Scholar 

  • Peterson DR, Loizzi RF (1974) Ultrastructure of the crayfish kidney, coelomosac, labyrinth, and nephridial canal. J Morphol 142:241–264

    CAS  PubMed  Google Scholar 

  • Riegel JA (1963) Micropuncture studies of chloride concentrations and osmotic pressure in the crayfish antennal gland. J Exp Biol 40:487–492

    CAS  PubMed  Google Scholar 

  • Riegel JA (1966) Analysis of formed bodies in urine removed from the crayfish antennal gland by micropuncture. J Exp Biol 44:387–395

    CAS  PubMed  Google Scholar 

  • Riegel JA (1970) A new model of transepithelial fluid movement with detailed application to fluid movement in the crayfish antennal gland. Comp Biochem Physiol 36:403–410

    Article  Google Scholar 

  • Riegel JA (1977) Fluid movement through the crayfish antennal gland. In: Gupta BL, Moreton RB, Osshman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, London, pp 613–631

    Google Scholar 

  • Riegel JA, Cook MA (1975) Recent studies of excretion in crustaceans. Fortschr Zool 23:48–75

    CAS  Google Scholar 

  • Riegel JA, Kirschner LB (1960) The excretion of inulin and glucose by the crayfish antennal gland. Biol Bull 118:296–307

    CAS  Google Scholar 

  • Schaffner A, Rodewald R (1978) Filtration barriers in the coelomic sac of the crayfish, Procambarus clarkii. J Ultrastruct Res 65:36–47

    CAS  PubMed  Google Scholar 

  • Sesma P, Bayona C, Villaro AC, Vazquez JJ (1983) A microscopic study on the antennal gland of Antrapotamobius ballines (Crustacea, Decapoda). Morfol Normal Patologica 7:289–301

    Google Scholar 

  • Shivers RR, Chauvin WJ (1977) Intercellular junctions of antennal gland epithelial cells in the crayfish Orconectes virilis. Cell Tissue Res 175:425

    Article  CAS  PubMed  Google Scholar 

  • Susanto GN (2000) Adaptation des écrevisses à l’eau douce: ontogenèse de l’osmorégulation chez Astacus leptodactylus. Ph.D thesis. University of Montpellier 2, France, pp 1–129

  • Susanto GN, Charmantier G (2000) Ontogeny of osmoregulation in the crayfish Astacus leptodactylus. Physiol Biochem Zool 73:169–176

    Google Scholar 

  • Susanto GN, Charmantier G (2001) Crayfish freshwater adaptation starts in eggs: ontogeny of osmoregulation in embryos of Astacus leptodactylus. J Exp Zool 289:433–440

    Article  CAS  PubMed  Google Scholar 

  • Trask T (1974) Laboratory-reared larvae of Cancer anthonyi (Decapoda: Brachyura) with a brief description of the internal anatomy of the megalopa. Mar Biol 27:63–74

    Google Scholar 

  • Wheatly MG, Gannon TA (1995) Ion regulation in crayfish: freshwater adaptations and the problem of molting. Am Zool 35:49–59

    CAS  Google Scholar 

  • Yamada E (1955) The fine structure of the renal glomerulus of the mouse. J Biophys Biochem Cytol 1:551

    Article  CAS  PubMed  Google Scholar 

  • Zehnder H (1934) Über die Embryonalentwicklung des Flusskrebses. Acta Zool 15:261–408

    Google Scholar 

Download references

Acknowledgements

We thank Mr. F. Aujoulat, University of Montpellier II, for his technical help, and anonymous referees for helping to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Charmantier-Daures.

Additional information

Thanks are due to the University of Tarbiat Modarres and Ministry of Science, Research and Technology, Islamic Republic of Iran, for financial aid and support. Special thanks are also extended to the Société Française d’Exportation des Ressources Educatives (SFERE) for a scholarship to S.K.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodabandeh, S., Charmantier, G., Blasco, C. et al. Ontogeny of the antennal glands in the crayfish Astacus leptodactylus (Crustacea, Decapoda): anatomical and cell differentiation. Cell Tissue Res 319, 153–165 (2005). https://doi.org/10.1007/s00441-004-0982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0982-7

Keywords

Navigation