Cell and Tissue Research

, Volume 318, Issue 1, pp 45–52 | Cite as

Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells

Review

Abstract

Nurr1 is a transcription factor that is expressed in the embryonic ventral midbrain and is critical for the development of dopamine (DA) neurons. It belongs to the conserved family of nuclear receptors but lacks an identified ligand and is therefore referred to as an orphan receptor. Recent structural studies have indicated that Nurr1 belongs to a class of ligand-independent nuclear receptors that are unable to bind cognate ligands. However, Nurr1 can promote signaling via its heterodimerization partner, the retinoid X receptor (RXR). RXR ligands can promote the survival of DA neurons via a process that depends on Nurr1–RXR heterodimers. In developing DA cells, Nurr1 is required for the expression of several genes important for DA synthesis and function. However, Nurr1 is probably also important for the maintenance of adult DA neurons and plays additional less-well-elucidated roles in other regions of the central nervous system and in peripheral tissues.

Keywords

Nurr1 NR4A2 Nuclear receptor Orphan receptor Transcription factor Dopamine cell development Parkinson’s disease 

References

  1. Arkenbout EK, Waard V de, Bragt M van, Achterberg TA van, Grimbergen JM, Pichon B, Pannekoek H, Vries CJ de (2002) Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation 106:1530–1535CrossRefPubMedGoogle Scholar
  2. Arkenbout EK, Bragt M van, Eldering E, Bree C van, Grimbergen JM, Quax PH, Pannekoek H, Vries CJ de (2003) TR3 orphan receptor is expressed in vascular endothelial cells and mediates cell cycle arrest. Arterioscler Thromb Vasc Biol 23:1535–1540CrossRefPubMedGoogle Scholar
  3. Backman C, Perlmann T, Wallén Å, Hoffer BJ, Morales M (1999) A selective group of dopaminergic neurons express Nurr1 in the adult mouse brain. Brain Res 851:125–132CrossRefPubMedGoogle Scholar
  4. Backman C, You ZB, Perlmann T, Hoffer BJ (2003) Elevated locomotor activity without altered striatal dopamine contents in Nurr1 heterozygous mice after acute exposure to methamphetamine. Behav Brain Res 143:95–100CrossRefPubMedGoogle Scholar
  5. Bassett MH, Suzuki T, Sasano H, White PC, Rainey WE (2004) The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. Mol Endocrinol 18:279–290CrossRefPubMedGoogle Scholar
  6. Buervenich S, Carmine A, Arvidsson M, Xiang F, Zhang Z, Sydow O, Jonsson EG, Sedvall GC, Leonard S, Ross RG, Freedman R, Chowdari KV, Nimgaonkar VL, Perlmann T, Anvret M, Olson L (2000) NURR1 mutations in cases of schizophrenia and manic-depressive disorder. Am J Med Genet 96:808–813CrossRefPubMedGoogle Scholar
  7. Castillo SO, Baffi JS, Palkovits M, Goldstein DS, Kopin IJ, Witta J, Magnuson MA, Nikodem VM (1998) Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol Cell Neurosci 11:36–46CrossRefPubMedGoogle Scholar
  8. Castro DS, Hermanson E, Joseph B, Wallén Å, Aarnisalo P, Heller A, Perlmann T (2001) Induction of cell cycle arrest and morphological differentiation by Nurr1 and retinoids in dopamine MN9D cells. J Biol Chem 276:43277–43284CrossRefPubMedGoogle Scholar
  9. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870CrossRefPubMedGoogle Scholar
  10. Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH (2002) Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J Comp Neurol 450:203–214CrossRefPubMedGoogle Scholar
  11. Chung S, Sonntag KC, Andersson T, Bjorklund LM, Park JJ, Kim DW, Kang UJ, Isacson O, Kim KS (2002) Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 16:1829–1838CrossRefPubMedGoogle Scholar
  12. Crispino M, Tocco G, Feldman JD, Herschman HR, Baudry M (1998) Nurr1 mRNA expression in neonatal and adult rat brain following kainic acid-induced seizure activity. Brain Res Mol Brain Res 59:178–188CrossRefPubMedGoogle Scholar
  13. Dunnett SB, Bjorklund A, Lindvall O (2001) Cell therapy in Parkinson’s disease—stop or go? Nat Rev Neurosci 2:365–369CrossRefPubMedGoogle Scholar
  14. Eells JB, Lipska BK, Yeung SK, Misler JA, Nikodem VM (2002) Nurr1-null heterozygous mice have reduced mesolimbic and mesocortical dopamine levels and increased stress-induced locomotor activity. Behav Brain Res 136:267–275CrossRefPubMedGoogle Scholar
  15. Falck B, Hillarp N-Å, Thieme G, Torp A (1962) Fluorescence of catechol amines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354Google Scholar
  16. Granholm AC, Reyland M, Albeck D, Sanders L, Gerhardt G, Hoernig G, Shen L, Westphal H, Hoffer B (2000) Glial cell line-derived neurotrophic factor is essential for postnatal survival of midbrain dopamine neurons. J Neurosci 20:3182–3190PubMedGoogle Scholar
  17. Hering R, Petrovic S, Mietz EM, Holzmann C, Berg D, Bauer P, Woitalla D, Muller T, Berger K, Kruger R, Riess O (2004) Extended mutation analysis and association studies of Nurr1 (NR4A2) in Parkinson disease. Neurology 62:1231–1232Google Scholar
  18. Hermanson E, Joseph B, Castro D, Lindqvist E, Aarnisalo P, Wallén Å, Benoit G, Hengerer B, Olson L, Perlmann T (2003) Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell Res 288:324–334CrossRefPubMedGoogle Scholar
  19. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) 9-cis Retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406CrossRefPubMedGoogle Scholar
  20. Honkaniemi J, Sharp FR (1996) Global ischemia induces immediate-early genes encoding zinc finger transcription factors. J Cereb Blood Flow Metab 16:557–565CrossRefPubMedGoogle Scholar
  21. Honkaniemi J, Sharp FR (1999) Prolonged expression of zinc finger immediate-early gene mRNAs and decreased protein synthesis following kainic acid induced seizures. Eur J Neurosci 11:10–17CrossRefPubMedGoogle Scholar
  22. Honkaniemi J, Sagar SM, Pyykonen I, Hicks KJ, Sharp FR (1995) Focal brain injury induces multiple immediate early genes encoding zinc finger transcription factors. Brain Res Mol Brain Res 28:157–163CrossRefPubMedGoogle Scholar
  23. Honkaniemi J, States BA, Weinstein PR, Espinoza J, Sharp FR (1997) Expression of zinc finger immediate early genes in rat brain after permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 17:636–646Google Scholar
  24. Hynes M, Rosenthal A (1999) Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol 9:26–36CrossRefPubMedGoogle Scholar
  25. Hynes M, Porter JA, Chiang C, Chang D, Tessier-Lavigne M, Beachy PA, Rosenthal A (1995) Induction of midbrain dopaminergic neurons by sonic hedgehog. Neuron 15:33–44CrossRefGoogle Scholar
  26. Iwawaki T, Kohno K, Kobayashi K (2000) Identification of a potential Nurr1 response element that activates the tyrosine hydroxylase gene promoter in cultured cells. Biochem Biophys Res Commun 274:590–595CrossRefPubMedGoogle Scholar
  27. Joseph B, Wallén-Mackenzie Å, Benoit G, Murata T, Joodmardi E, Okret S, Perlmann T (2003) p57(Kip2) cooperates with Nurr1 in developing dopamine cells. Proc Natl Acad Sci USA 100:15619–15624CrossRefPubMedGoogle Scholar
  28. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernuaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56CrossRefPubMedGoogle Scholar
  29. Kim KS, Kim CH, Hwang DY, Seo H, Chung S, Hong SJ, Lim JK, Anderson T, Isacson O (2003a) Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. J Neurochem 85:622–634PubMedGoogle Scholar
  30. Kim TE, Lee HS, Lee YB, Hong SH, Lee YS, Ichinose H, Kim SU, Lee MA (2003b) Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenptypes in the Nurr1-overexpressing neural stem cell. Biochem Biophys Res Commun 305:1040–1048CrossRefPubMedGoogle Scholar
  31. Kliewer SA, Lehmann JM, Willson TM (1999) Orphan nuclear receptors: shifting endocrinology into reverse. Science 284:757–760CrossRefPubMedGoogle Scholar
  32. Lammi J, Huppunen J, Aarnisalo P (2004) Regulation of the osteopontin gene by the orphan nuclear receptor Nurr1 in osteoblasts. Mol Endocrinol 18:1546–1557CrossRefGoogle Scholar
  33. Law SW, Conneely OM, DeMayo FJ, O’Malley BW (1992) Identification of a new brain-specific transcription factor, NURR1. Mol Endocrinol 6:2129–2135CrossRefPubMedGoogle Scholar
  34. Le W, Conneely OM, He Y, Jankovic J, Appel SH (1999a) Reduced Nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury. J Neurochem 73:2218–2221PubMedGoogle Scholar
  35. Le W, Conneely OM, Zou L, He Y, Saucedo-Cardenas O, Jankovic J, Mosier DR, Appel SH (1999b) Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice. Exp Neurol 159:451–458CrossRefPubMedGoogle Scholar
  36. Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK (2003) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33:85–89CrossRefPubMedGoogle Scholar
  37. Liu D, Jia H, Holmes DI, Stannard A, Zachary I (2003) Vascular endothelial growth factor-regulated gene expression in endothelial cells: KDR-mediated induction of Egr3 and the related nuclear receptors Nur77, Nurr1, and Nor1. Arterioscler Thromb Vasc Biol 23:2002–2007CrossRefPubMedGoogle Scholar
  38. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839CrossRefPubMedGoogle Scholar
  39. Mata de Urquiza A, Liu S, Sjöberg M, Zetterström RH, Griffiths W, Sjövall J, Perlmann T (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144CrossRefPubMedGoogle Scholar
  40. McEvoy AN, Bresnihan B, Fitzgerald O, Murphy EP (2002) Corticotropin-releasing hormone signaling in synovial tissue vascular endothelium is mediated through the cAMP/CREB pathway. Ann N Y Acad Sci 966:119–130PubMedGoogle Scholar
  41. Murphy EP, McEvoy A, Conneely OM, Bresnihan B, FitzGerald O (2001) Involvement of the nuclear orphan receptor NURR1 in the regulation of corticotropin-releasing hormone expression and actions in human inflammatory arthritis. Arthritis Rheum 44:782–793CrossRefPubMedGoogle Scholar
  42. Nsegbe E, Wallén-Mackenzie Å, Dauger S, Roux JC, Shvarev Y, Lagercrantz H, Perlmann T, Herlenius E (2004) Congenital hypoventilation and impaired hypoxic response in Nurr1 mutant mice. J Physiol (Lond) 556:43–59CrossRefGoogle Scholar
  43. Ojeda V, Fuentealba JA, Galleguillos D, Andres ME (2003) Rapid increase of Nurr1 expression in the substantia nigra after 6-hydroxydopamine lesion in the striatum of the rat. J Neurosci Res 73:686–697CrossRefPubMedGoogle Scholar
  44. Oo TF, Kholodilov N, Burke RE (2003) Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 23:5141–5148PubMedGoogle Scholar
  45. Ordentlich P, Yan Y, Zhou S, Heyman RA (2003) Identification of the anti-neoplastic agent 6-mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1. J Biol Chem 22:22Google Scholar
  46. Pena de Ortiz S, Jamieson GAJ (1996) GAJ HZF-3, an immediate-early orphan receptor homologous to Nurr1/NOT: induction upon membrane depolarization and seizures. Brain Res Mol Brain Res 38:1–13PubMedGoogle Scholar
  47. Perlmann T, Jansson L (1995) A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev 9:769–782PubMedGoogle Scholar
  48. Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P, Drouin J (1997) Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol 17:5946–5951Google Scholar
  49. Riddle R, Pollock JD (2003) Making connections: the development of mesencephalic dopaminergic neurons. Dev Brain Res 147:3–21CrossRefGoogle Scholar
  50. Sacchetti P, Brownschidle LA, Granneman JG, Bannon MJ (1999) Characterization of the 5′-flanking region of the human dopamine transporter gene. Brain Res Mol Brain Res 74:167–174CrossRefPubMedGoogle Scholar
  51. Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ (2001) Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 76:1565–1572CrossRefPubMedGoogle Scholar
  52. Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH (1999) Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126:4017–4026PubMedGoogle Scholar
  53. Saucedo-Cardenas O, Conneely OM (1996) Comparative distribution of NURR1 and NUR77 nuclear receptors in the mouse central nervous system. J Mol Neurosci 7:51–63PubMedGoogle Scholar
  54. Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, Burbach JP, Conneely OM (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 95:4013–4018CrossRefPubMedGoogle Scholar
  55. Scearce LM, Laz TM, Hazel TG, Lau LF, Taub R (1993) RNR-1, a nuclear receptor in the NGFI-B/Nur77 family that is rapidly induced in regenerating liver. J Biol Chem 268:8855–8861PubMedGoogle Scholar
  56. Simon HH, Saueressig H, Wurst W, Goulding MG, O’Leary DD (1998) En-1 and En-2 control the fate of the dopaminergic neurons in the substantia nigra and ventral tegmentum. Eur J Neurosci 10(Suppl 10):389Google Scholar
  57. Smidt MP, Schaick HS van, Lanctot C, Tremblay JJ, Cox JJ, Kleij AA van der, Wolterink G, Drouin J, Burbach JP (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 94:13305–13310CrossRefPubMedGoogle Scholar
  58. Smidt MP, Asbreuk CH, Cox JJ, Chen H, Johnson RL, Burbach JP (2000) A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 3:337–341CrossRefPubMedGoogle Scholar
  59. Smits SM, Ponnio T, Conneely OM, Burbach JP, Smidt MP (2003) Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J Neurosci 18:1731–1738CrossRefPubMedGoogle Scholar
  60. Sonntag KC, Simantov R, Kim KS, Isacson O (2004) Temporally induced Nurr1 can induce a non-neuronal dopaminergic cell type in embryonic stem cell differentiation. Eur J Neurosci 19:1141–1152Google Scholar
  61. Tan EK, Chung H, Zhao Y, Shen H, Chandran VR, Tan C, Teoh ML, Yih Y, Pavanni R, Wong MC (2003) Genetic analysis of Nurr1 haplotypes in Parkinson’s disease. Neurosci Lett 347:139–142CrossRefPubMedGoogle Scholar
  62. Thuret S, Bhatt L, O’Leary DD, Simon HH (2004) Identification and developmental analysis of genes expressed by dopaminergic neurons of the substantia nigra pars compacta. Mol Cell Neurosci 25:394–405Google Scholar
  63. Tseng KY, Roubert C, Do L, Rubinstein M, Kelly MA, Grandy DK, Low MJ, Gershanik OS, Murer MG, Giros B, Raisman-Vozari R (2000) Selective increase of Nurr1 mRNA expression in mesencephalic dopaminergic neurons of D2 dopamine receptor-deficient mice. Brain Res Mol Brain Res 80:1–6CrossRefPubMedGoogle Scholar
  64. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48PubMedGoogle Scholar
  65. Wagner J, Akerud P, Castro DS, Holm PC, Canals JM, Snyder EY, Perlmann T, Arenas E (1999) Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat Biotechnol 17:653–659CrossRefPubMedGoogle Scholar
  66. Wallén Å, Zetterstrom RH, Solomin L, Arvidsson M, Olson L, Perlmann T (1999) Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp Cell Res 253:737–746CrossRefPubMedGoogle Scholar
  67. Wallén Å, Castro DS, Zetterström RH, Karlén M, Olson L, Ericson J, Perlmann T (2001) Orphan nuclear receptor Nurr1 is essential for Ret expression in the midbrain dopamine neurons and in the brain stem. Mol Cell Neurosci 18:649–663CrossRefPubMedGoogle Scholar
  68. Wallén-Mackenzie Å, Mata de Urquiza A, Petersson S, Rodriguez FJ, Friling S, Wagner J, Ordentlich P, Lengqvist J, Heyman RA, Arenas E, Perlmann T (2003) Nurr1-RXR heterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes Dev 17:3036–3047CrossRefPubMedGoogle Scholar
  69. Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP, Perlmann T (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423:555–560CrossRefPubMedGoogle Scholar
  70. Werme M, Hermanson E, Carmine A, Buervenich S, Zetterstrom RH, Thoren P, Ogren SO, Olson L, Perlmann T, Brene S (2003) Decreased ethanol preference and wheel running in Nurr1-deficient mice. Eur J Neurosci 17:2418–2424Google Scholar
  71. Witta J, Baffi JS, Palkovits M, Mezey E, Castillo SO, Nikodem VM (2000) Nigrostriatal innervation is preserved in Nurr1-null mice, although dopaminergic neuron precursors are arrested from terminal differentiation. Brain Res Mol Brain Res 84:67–78CrossRefPubMedGoogle Scholar
  72. Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108CrossRefPubMedGoogle Scholar
  73. Xing G, Zhang L, Heynen T, Li XL, Smith MA, Weiss SR, Feldman AN, Detera-Wadleigh S, Chuang DM, Post RM (1997) Rat Nurr1 is prominently expressed in perirhinal cortex, and differentially induced in the hippocampal dentate gyrus by electroconvulsive vs. kindled seizures. Brain Res Mol Brain Res 47:251–261CrossRefPubMedGoogle Scholar
  74. Zetterström RH, Solomin L, Mitsiadis T, Olson L, Perlmann T (1996a) Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor1. Mol Endocrinol 10:1656–1666CrossRefPubMedGoogle Scholar
  75. Zetterström RH, Williams R, Perlmann T, Olson L (1996b) Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res Mol Brain Res 41:111–120PubMedGoogle Scholar
  76. Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250CrossRefPubMedGoogle Scholar
  77. Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83:1197–1209CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.The Ludwig InstituteStockholmSweden
  2. 2.Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden

Personalised recommendations