Skip to main content

Advertisement

Log in

ATP-evoked increase in intracellular calcium via the P2Y receptor in proliferating bovine trophoblast cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Bovine trophoblasts actively proliferate to elongate blastocysts before implantation. The trophoblast at this stage secretes cytokines and starts to differentiate into an endocrine cell (binucleate cell) for successful pregnancy. Intracellular calcium ([Ca2+]i) may act as a second messenger in the trophoblast response. In this study, we investigated [Ca2+]i signals in a bovine trophoblast cell line (BT-1) using fura-2 fluorescence. We found that an application of ATP (≥1 μM) induced a transient increase in [Ca2+]i in BT-1 cells. The ATP-induced increase was not affected by the removal of extracellular Ca2+, but was suppressed by suramin (100 μM), an antagonist of P2 receptors. Pretreatment with pertussis toxin (0.1 or 1 μg/ml) partially inhibited the response to ATP. The order of potency to increase [Ca2+]i was ATP=UTP>ADP. ATP-induced [Ca2+]i responses preferentially occurred in cells at the periphery of the colony. The reduced responses at the center of the colony were associated with an increase in cell density and decrease in bromodeoxyuridine incorporation. These results indicated that ATP stimulated P2Y receptors coupled to pertussis toxin-sensitive and -insensitive G proteins, leading to an increase in [Ca2+]i as a result of release of Ca2+ from intracellular stores in BT-1 cells. The occurrence of ATP-induced [Ca2+]i signals depended on the cell confluence and reflected the high proliferative activity of the trophoblast cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B
Fig. 3A, B
Fig. 4A, B
Fig. 5A, B
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Anthony RV, Liang R, Kayl EP, Pratt SL (1995) The growth hormone/prolactin gene family in ruminant placentae. J Reprod Fertil Suppl 49:83–95

    CAS  PubMed  Google Scholar 

  • Barcroft LC, Hay-Schmidt A, Caveney A, Gilfoyle E, Overstrom EW, Hyttel P, Watson AJ (1998) Trophectoderm differentiation in the bovine embryo: characterization of a polarized epithelium. J Reprod Fertil 114:327–339

    CAS  PubMed  Google Scholar 

  • Betteridge KJ, Fléchon J-E (1988) The anatomy and physiology of pre-attachment bovine embryos. Theriogenology 29:155–187

    Google Scholar 

  • Betteridge KJ, Eaglesome MD, Randall GCB, Mitchell D (1980) Collection, description and transfer of embryos from cattle 10–16 days after oestrus. J Reprod Fertil 59:205–216

    CAS  PubMed  Google Scholar 

  • Bogdanov YD, Wildman SS, Clements MP, King BF, Burnstock G (1998) Molecular cloning and characterization of rat P2Y4 nucleotide receptor. Br J Pharmacol 124: 428–430

    CAS  PubMed  Google Scholar 

  • Bradbury RA, McCall MN, Brown MJ, Conigrave AD (1996) Functional heterogeneity of human term cytotrophoblasts revealed by differential sensitivity to extracellular Ca2+ and nucleotides. J Endocrinol 149: 135–144

    CAS  PubMed  Google Scholar 

  • Chang MC (1952) Development of bovine blastocyst with a note on implantation. Anat Rec 113:143–161

    Google Scholar 

  • Clapham DE, Neer EJ (1993) New roles for G-protein βγ-dimers in transmembrane signalling. Nature 365: 403–406

    CAS  PubMed  Google Scholar 

  • Communi D, Pirotton S, Parmentier M, Boeynaems J-M (1995) Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem 270:30849–30852

    CAS  PubMed  Google Scholar 

  • Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems J-M (2000) Advances in signalling by extracellular nucleotides: the role and transduction mechanisms of P2Y receptors. Cell Signal 12:351–360

    Article  CAS  PubMed  Google Scholar 

  • Cross JC, Werb Z, Fisher SJ (1994) Implantation and the placenta: key pieces of the development puzzle. Science 266: 1508–1518

    CAS  PubMed  Google Scholar 

  • Demmers KJ, Derecka K, Flint A (2001) Trophoblast interferon and pregnancy. Reproduction 121: 41–49

    CAS  PubMed  Google Scholar 

  • Enomoto K, Furuya K, Yamagishi S, Oka T, Maeno T (1994) The increase in the intracellular Ca2+ concentration induced by mechanical stimulation is propagated via release of pyrophosphorylated nucleotides in mammary epithelial cells. Pflügers Arch 427:533–542

    Google Scholar 

  • Furuya K, Furuya S, Yamagishi S (1994) Intracellular calcium responses and shape conversions induced by endothelin in cultured subepithelial fibroblasts of rat duodenal villi. Pflügers Arch 428: 97–104

    Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56:615–649

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  Google Scholar 

  • Homolya L, Steinberg TH, Boucher RC (2000) Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol 150:1349–1359.

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Wang D, Heppel LA (1989) Extracellular ATP is a mitogen for 3T3, 3T6, and A431 cells and acts synergistically with other growth factors. Proc Natl Acad Sci USA 86:7904–7908

    CAS  PubMed  Google Scholar 

  • Jones KT (1998) Ca2+ oscillations in the activation of the egg and development of the embryo in mammals. Int J Dev Biol 42:1-10

    CAS  PubMed  Google Scholar 

  • Karl PI, Chusid J, Tagoe C, Fisher SE (1997) Ca2+ flux in human placental trophoblasts. Am J Physiol 272: C1776-C1780

    CAS  PubMed  Google Scholar 

  • Klisch K, Hecht W, Pfarrer C, Shuler G, Hoffmann B, Leiser R (1999) DNA content and ploidy level of bovine placentomal trophoblast giant cells. Placenta 20:451–458

    CAS  PubMed  Google Scholar 

  • Lustig KD, Shiau AK, Brake AJ, Julius D (1993) Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci USA 90:5113–5117

    CAS  PubMed  Google Scholar 

  • Nakano H, Furuya K, Yamagishi S (2001a) Synergistic effects of ATP on oxytocin-induced intracellular Ca2+ response in mouse mammary myoepithelial cells. Pflügers Arch 442:57–63

    Google Scholar 

  • Nakano H, Takahashi T, Imai K, Hashizume K (2001b) Expression of placental lactogen and cytokeratin in bovine placental binucleate cells in culture. Cell Tissue Res 303:263–270

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Shimada A, Imai K, Takezawa T, Takahashi T, Hashizume K (2002a) Bovine trophoblastic cell differentiation on collagen substrata: formation of binucleate cells expressing placental lactogen. Cell Tissue Res 307:225-235

    Article  PubMed  Google Scholar 

  • Nakano H, Shimada A, Imai K, Takahashi T, Hashizume K (2002b) Association of Dolichos biflorus lectin binding with full differentiation of bovine trophoblast cells. Reproduction 124:581–592

    CAS  PubMed  Google Scholar 

  • Neer EJ (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80: 249–257

    CAS  PubMed  Google Scholar 

  • Parr CE, Sullivan DM, Paradiso AM, Lazarowski ER, Burch LH, Olsen JC, Erb L, Weisman GA, Boucher RC, Turner JT (1994) Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci USA 91:3275–3279

    CAS  PubMed  Google Scholar 

  • Petit A, Bélisle S (1995) Stimulation of intracellular calcium concentration by adenosine triphosphate and uridine 5'-triphosphate in human term placental cells: evidence for purinergic receptors. J Clin Endocrinol Metab 80:1809–1815

    CAS  PubMed  Google Scholar 

  • Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636

    CAS  PubMed  Google Scholar 

  • Putney JW Jr, McKay RR (1999) Capacitative calcium entry channels. Bioessays 21:38–46

    PubMed  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  • Rice WR, Burton FM, Fiedeldey DT (1995) Cloning and expression of the alveolar type II cell P2U-purinergic receptor. Am J Respir Cell Mol Biol 12:27–32

    CAS  PubMed  Google Scholar 

  • Schmidt M, Frings M, Mono M-L, Guo Y, Weernink PAO, Evellin S, Han L, Jakobs KH (2000) G protein-coupled receptor-induced sensitization of phospholipase C stimulation by receptor tyrosine kinases. J Biol Chem 275: 32603–32610

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Nakano H, Takahashi T, Imai K, Hashizume K (2001) Isolation and characterization of a bovine blastocyst-derived trophoblastic cell line, BT-1: development of a culture system in the absence of feeder cell. Placenta 22: 652–662

    Article  CAS  PubMed  Google Scholar 

  • Stachecki JJ, Armant DR (1996) Transient release of calcium from inositol 1,4,5-trisphosphate-specific stores regulates mouse preimplantation development. Development 122: 2485–2496

    CAS  PubMed  Google Scholar 

  • Stachecki JJ, Yelian FD, Schultz JF, Leach RE, Armant DR (1994) Blastocyst cavitation is accelerated by ethanol- or ionophore-induced elevation of intracellular calcium. Biol Reprod 50:1-9

    CAS  PubMed  Google Scholar 

  • Wang J, Rout UK, Bagchi IC, Armant DR (1998) Expression of calcitonin receptors in mouse preimplantation embryos and their function in the regulation of blastocyst differentiation by calcitonin. Development 125:4293–4302

    CAS  PubMed  Google Scholar 

  • Wang J, Mayernik L, Schultz JF, Armant DR (2000) Acceleration of trophoblast differentiation by heparin-binding EGF-like growth factor is dependent on stage-specific activation of calcium influx by ErbB receptors in developing mouse blastocysts. Development 127:33–44

    CAS  PubMed  Google Scholar 

  • Wathes DC, Wooding FBP (1980) An electron microscopic study of implantation in the cow. Am J Anat 159: 285-306

    CAS  PubMed  Google Scholar 

  • Wooding FBP (1982) The role of the binucleate cell in ruminant placental structure. J Reprod Fert Suppl 31: 31–39

    CAS  Google Scholar 

  • Wooding FBP, Wathes DC (1980) Binucleate cell migration in the bovine placentome. J Reprod Fert 59: 425–430

    CAS  PubMed  Google Scholar 

  • Wooding FBP, Beckers JF (1987) Trinucleate cells and the ultrastructural localisation of bovine placental lactogen. Cell Tissue Res 247: 667–673

    CAS  PubMed  Google Scholar 

  • Yamada O, Todoroki J, Kizaki K, Takahashi T, Imai K, Patel OV, Schuler LA, Hashizume K (2002) Expression of prolactin-related protein I at the fetomaternal interface during the implantation period in cows. Reproduction 124: 427–437

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Hashizume.

Additional information

This work was supported by grants from the Bio-oriented Technology Research Advancement Institution (BRAIN), and the Organized Research Combination System in the Science and Technology Agency of Japan. H.N. is a domestic research fellow supported by Japan Society for the Promotion of Science. A.S. is supported by a post-doctoral fellowship from the Japan Science and Technology Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, H., Shimada, A., Imai, K. et al. ATP-evoked increase in intracellular calcium via the P2Y receptor in proliferating bovine trophoblast cells. Cell Tissue Res 313, 227–236 (2003). https://doi.org/10.1007/s00441-003-0754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0754-9

Keywords

Navigation