Skip to main content

Advertisement

Log in

Histidine-rich glycoprotein plus zinc reverses growth inhibition of vascular smooth muscle cells by heparin

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Vascular smooth muscle cell (SMC) hyperplasia is known to be an important component in the pathogenesis of arteriosclerosis and restenosis. Although heparin has been well recognized as the representative molecule suppressing SMC growth in vitro, attempts to use heparin as a therapeutic anti-restenosis drug have not favorably influenced the angiographic or clinical outcome after angioplasty in some clinical trials. In this study, we have examined the effect of histidine-rich glycoprotein (HRG), a relatively abundant serum glycoprotein (~100 μg/ml in human serum), on the growth inhibition of cultured vascular SMC by heparin. Vascular SMC growth was significantly inhibited by heparin, giving nearly 85% inhibition with 100 μg/ml heparin. HRG reversed heparin-induced SMC growth inhibition in a dose dependent manner; 75% restoration of cell growth was observed when 100 μg/ml of HRG was co-added with 100 μg/ml heparin. Interestingly, micromolar concentrations of the zinc ion (0–10 μM), compatible with concentrations released from activated platelets, were found to enhance the restorative action of HRG. Western blot experiment demonstrated no significant amounts of the HRG moiety in fetal bovine serum, eliminating the possible contribution of contaminant HRG from culture media. These findings indicate that HRG, in combination with the zinc ion, plays a role in modulating the SMC growth response in pathophysiological states and explain the lack of success of heparin as a therapeutic anti-restenosis drug in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2A, B.
Fig. 3.
Fig. 4A, B.
Fig. 5.

Similar content being viewed by others

References

  • Au YP, Dobrowolska G, Morris DR, Clowes AW (1994) Heparin decreases activator protein-1 binding to DNA in part by posttranslational modification of Jun B. Circ Res 75:15–22

    CAS  PubMed  Google Scholar 

  • Borza DB, Morgan WT (1998) Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by pH and metals. J Biol Chem 273:5493–5499

    Article  CAS  PubMed  Google Scholar 

  • Borza DB, Tatum FM, Morgan WT (1996) Domain structure and conformation of histidine-proline-rich glycoprotein. Biochemistry 35:1925–1934

    Article  CAS  PubMed  Google Scholar 

  • Brack MJ, Ray S, Chauhan A, Fox J, Hubner PJ, Schofield P, Harley A, Gershlick AH (1995) The subcutaneous heparin and angioplasty restenosis prevention (SHARP) trial. Results of a multicenter randomized trial investigating the effects of high dose unfractionated heparin on angiographic restenosis and clinical outcome. J Am Coll Cardiol 26:947–954

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Busch SJ, Martin GA, Barnhart RL, Mano M, Cardin AD, Jackson RL (1992) Trans-repressor activity of nuclear glycosaminoglycans on Fos and Jun/AP-1 oncoprotein-mediated transcription. J Cell Biol 116:31–42

    CAS  PubMed  Google Scholar 

  • Cairns JA, Gill J, Morton B, Roberts R, Gent M, Hirsh J, Holder D, Finnie K, Marquis JF, Naqvi S, Cohen E (1996) Fish oils and low-molecular-weight heparin for the reduction of restenosis after percutaneous transluminal coronary angioplasty. The EMPAR Study. Circulation 94:1553–1560

    CAS  PubMed  Google Scholar 

  • Castellot JJ Jr, Addonizio ML, Rosenberg R, Karnovsky MJ (1981) Cultured endothelial cells produce a heparin-like inhibitor of smooth muscle cell growth. J Cell Biol 90:372–379

    CAS  PubMed  Google Scholar 

  • Castellot JJ Jr, Favreau LV, Karnovsky MJ, Rosenberg RD (1982) Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin: possible role of a platelet endoglycosidase. J Biol Chem 257:11256–11260

    CAS  PubMed  Google Scholar 

  • Castellot JJ Jr, Wong K, Herman B, Hoover RL, Albertini DF, Wright TC, Caleb BL, Karnovsky MJ (1985) Binding and internalization of heparin by vascular smooth muscle cells. J Cell Physiol 124:13–20

    CAS  PubMed  Google Scholar 

  • Castellot JJ Jr, Pukac LA, Caleb BL, Wright TC, Karnovsky MJ (1989) Heparin selectively inhibits a protein kinase C-dependent mechanism of cell cycle progression in calf aortic smooth muscle cells. J Cell Biol 109:3147–3155

    CAS  PubMed  Google Scholar 

  • Chamley-Campbell JH, Campbell GR, Ross R (1981) Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol 89:379–383

    CAS  PubMed  Google Scholar 

  • Clowes AW, Karnowsky MJ (1977) Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265:625–626

    CAS  PubMed  Google Scholar 

  • Engesser L, Kluft C, Briet E, Brommer EJ (1987) Familial elevation of plasma histidine-rich glycoprotein in a family with thrombophilia. Br J Haematol 67:355–358

    CAS  PubMed  Google Scholar 

  • Faxon DP, Spiro TE, Minor S, Cote G, Douglas J, Gottlieb R, Califf R, Dorosti K, Topol E, Gordon JB, Ohmen M, ERA investigators (1994) Low molecular weight heparin in prevention of restenosis after angioplasty. Results of enoxaparin restenosis (ERA) trial. Circulation 90:908–914

    CAS  PubMed  Google Scholar 

  • Floege J, Eng E, Young BA, Couser WG, Johnson RJ (1993) Heparin suppresses mesangial cell proliferation and matrix expansion in experimental mesangioproliferative glomerulonephritis. Kidney Int 43:369–380

    CAS  PubMed  Google Scholar 

  • Fujiwara Y, Kaji T (1997) Zinc potentiates the stimulation by basic and acidic fibroblast growth factors on the proliferation of cultured vascular smooth muscle cells. Res Commun Mol Pathol Pharmacol 97:95–106

    CAS  PubMed  Google Scholar 

  • Groggel GC, Marinides GN, Hovingh P, Hammond E, Linker A (1990) Inhibition of rat mesangial cell growth by heparan sulfate. Am J Physiol 258:F259-F265

    CAS  PubMed  Google Scholar 

  • Guyton JR, Rosenberg RD, Clowes AW, Karnovsky MJ (1980) Inhibition of rat arterial smooth muscle cell proliferation by heparin. Circ Res 46:625–634

    CAS  PubMed  Google Scholar 

  • Hajjar DP, Boyd DB, Harpel PC, Nachman RL (1987) Histidine-rich glycoprotein inhibits the antiproliferative effect of heparin on smooth muscle cells. J Exp Med 165:908–913

    CAS  PubMed  Google Scholar 

  • Henson MC, Shi W, Greene SJ, Reggio BC (1996) Effects of pregnant human, nonpregnant human, and fetal bovine sera on human chorionic gonadotropin, estradiol, and progesterone release by cultured human trophoblast cells. Endocrinology 137:2067–2074

    CAS  PubMed  Google Scholar 

  • Hoover RL, Rosenberg R, Hearing W, Karnovsky MJ (1980) Inhibition of rat arterial smooth muscle cell proliferation by heparin. II. In vitro studies. Circ Res 47:578–583

    CAS  PubMed  Google Scholar 

  • Hulett MD, Parish CR (2000) Murine histidine-rich glycoprotein: cloning, characterization and cellular origin. Immunol Cell Biol 78:280–287

    Article  CAS  PubMed  Google Scholar 

  • Kluszynski BA, KimC, Faulk WP (1997) Zinc as a cofactor for heparin neutralization by histidine-rich glycoprotein. J Biol Chem 272:13541–13547

    Article  CAS  PubMed  Google Scholar 

  • Koide T, Odani S (1987) Histidine-rich glycoprotein is evolutionarily related to the cystatin superfamily. Presence of two cystatin domains in the N-terminal region. FEBS Lett 216:17–21

    Article  CAS  PubMed  Google Scholar 

  • Koide T, Foster D, Yoshitake S, Davie EW (1986) Amino acid sequence of human histidine-rich glycoprotein derived from the nucleotide sequence of its cDNA. Biochemistry 25:2220–2225

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lerch PG, Nydegger UE, Kuyas C, Haeberli A (1988) Histidine-rich glycoprotein binding to activated human platelets. Br J Haematol 70:219–224

    CAS  PubMed  Google Scholar 

  • Leung LL (1986) Interaction of histidine-rich glycoprotein with fibrinogen and fibrin. J Clin Invest 77:1305–1311

    CAS  PubMed  Google Scholar 

  • Leung LL (1993) Histidine-rich glycoprotein: an abundant plasma protein in search of a function. J Lab Clin Med 121:630–631

    CAS  PubMed  Google Scholar 

  • Leung LL, Nachman RL, Harpel PC (1984) Complex formation of platelet thrombospondin with histidine-rich glycoprotein. J Clin Invest 73:5–12

    CAS  PubMed  Google Scholar 

  • Lijnen HR, Hoylaerts M, Collen D (1980) Isolation and characterization of a human plasma protein with affinity for the lysine binding sites in plasminogen. Role in the regulation of fibrinolysis and identification as histidine-rich glycoprotein. J Biol Chem 255:10214–10222

    CAS  PubMed  Google Scholar 

  • Lijnen HR, Hoylaerts M, Collen D (1983) Heparin binding properties of human histidine-rich glycoprotein. Mechanism and role in the neutralization of heparin in plasma. J Biol Chem 258:3803–3808

    CAS  PubMed  Google Scholar 

  • Majesky MW, Schwartz SM, Clowes MM, Clowes AW (1987) Heparin regulates smooth muscle S phase entry in the injured rat carotid artery. Circ Res 61:296–300

    CAS  PubMed  Google Scholar 

  • Morgan WT (1981) Interactions of the histidine-rich glycoprotein of serum with metals. Biochemistry 20:1054–1061

    CAS  PubMed  Google Scholar 

  • Morgan WT, Koskelo P, Koenig H, Conway TP (1978) Human histidine-rich glycoprotein. II. Serum levels in adults, pregnant women and neonates. Proc Soc Exp Biol Med 158:647–651

    CAS  PubMed  Google Scholar 

  • Mori S, Nishibori M, Yamaoka K, Okamoto, M (2000) One-step purification of rabbit histidine rich glycoprotein by dye-ligand affinity chromatography with metal ion requirement. Arch Biochem Biophys 383:191–196

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Takahashi HK, Yamaoka K, Okamoto M, Nishibori M (2003) High affinity binding of serum histidine rich glycoprotein to nickel-nitrilotriacetic acid: the application to microquantification. Life Sci 73:93–102

  • Orlandi A, Ropraz P, Gabbiani G (1994) Proliferative activity and alpha-smooth muscle actin expression in cultured rat aortic smooth muscle cells are differently modulated by transforming growth factor-beta 1 and heparin. Exp Cell Res 214:528–536

    Article  CAS  PubMed  Google Scholar 

  • Owens GK, Geisterfer AA, Yang YW, Komoriya A (1988) Transforming growth factor-beta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol 107:771–780

    CAS  PubMed  Google Scholar 

  • Pukac LA, Ottlinger ME, Karnovsky MJ (1992) Heparin suppresses specific second messenger pathways for protooncogene expression in rat vascular smooth muscle cells. J Biol Chem 267:3707–3711

    CAS  PubMed  Google Scholar 

  • Refson JS, Schachter M, Patel MK, Chan P, Wolfe JH, Sever P (1995) Correlation of heparin binding with responsiveness in human vascular smooth muscle cells. Biochem Soc Trans 23:172S

    CAS  PubMed  Google Scholar 

  • Reilly CF, Kindy MS, Brown KE, Rosenberg RD, Sonenshein GE (1989) Heparin prevents vascular smooth muscle cell progession through the G1 phase of the cell cycle. J Biol Chem 264:6990–6995

    CAS  PubMed  Google Scholar 

  • Tanguay J-F, Wilensky RL, Weismann NJ, Bartorelli AL, Mehran R, Williams DO, Bucher TA, Wu H, Popma JJ, Kaplan AV (1998) Clinical trials involving the use of heparin to modulate the response to vascular injury and to reduce the incidence of restenosis (Abstract). Circulation 98:4-5

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Underwood PA, Mitchell SM (2000) Low density lipoproteins in human plasma make vascular smooth muscle cells resistant to growth inhibition by heparin. Cardiovasc Res 47:749–758

    Article  CAS  PubMed  Google Scholar 

  • Underwood PA, Mitchell SM, Whitelock JM (1998) Heparin fails to inhibit the proliferation of human vascular smooth muscle cells in the presence of human serum. J Vasc Res 35:449–460

    Article  CAS  PubMed  Google Scholar 

  • Wright TC Jr, Johnstone TV, Castellot JJ Jr, Karnovsky MJ (1985) Inhibition of rat cervical epithelial cell growth by heparin and its reversal by EGF. J Cell Physiol 125:499–506

    CAS  PubMed  Google Scholar 

  • Wright TC Jr, Pukac LA, Castellot JJ Jr, Karnovsky MJ, Levine RA, Kim-Park HY, Campisi J (1989) Heparin suppresses the induction of c-fos and c-myc mRNA in murine fibroblasts by selective inhibition of a protein kinase C-dependent pathway. Proc Natl Acad Sci USA 86:3199–3203

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Nishibori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, S., Shinohata, R., Renbutsu, M. et al. Histidine-rich glycoprotein plus zinc reverses growth inhibition of vascular smooth muscle cells by heparin. Cell Tissue Res 312, 353–359 (2003). https://doi.org/10.1007/s00441-003-0737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0737-x

Keywords

Navigation