Skip to main content
Log in

Multi-photon microscopy of cell types in the viable taste disk of the frog

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The morphology of viable taste disks of the frog was explored with multi-photon microscopy. In order to identify single sensory or supporting cells within the tissue, we searched for fluorescent dyes that stained subsets of the cell population or possibly cell types. Some cell types indeed stained preferentially with certain fluorescent dyes. A subset of glia-like cells (type Ic) stained with BCECF, a H+-sensitive dye, and indo-1, a Ca2+-sensitive dye, both presented in the membrane-permeant ester form. BCECF-ester also stained the dendrites of type III receptor cells, but indo-1 ester did not. Receptor cells of type II stained with MQAE, a positively charged Cl-sensitive dye. A subset of type II cells accumulated amiloride, a positively charged fluorescent diuretic. Certain supporting cells, i.e., wing cells (type Ib) and glia-like cells (type Ic), were labeled by negatively charged dyes, e.g., calcium green-1 dextran. Mucus cells (type Ia) were stained with only two of the 19 dyes examined, and Merkel-like basal cells (type IV) were stained only with a membrane-labeling voltage-sensitive dye, presumably by endocytosis. No dye was found which would stain all types of cells or all receptor cells. This finding reveals a potential problem for future functional imaging aiming at population responses, as the responses of unstained cells then would remain unobserved. Specificity of dyes with respect to cell types was sufficient to identify supporting cells and receptor cells. Cell shape could then be reconstructed, using optical slicing and rendering techniques. Thus populations of dye-loaded elongated cells, especially types Ic, II and III, could for the first time be visualized in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A–D.
Fig. 3A–D.
Fig. 4A, B.
Fig. 5A–D.
Fig. 6A, B.
Fig. 7A–D.
Fig. 8.
Fig. 9A–E.
Fig. 10A–D.
Fig. 11A–C.

Similar content being viewed by others

References

  • Abrahamse SL, Rechkemmer G (2001) Identification of an organic anion transport system in the human colon carcinoma cell line HT29 clone 19a. Pflugers Arch 441:529–537

    Article  CAS  PubMed  Google Scholar 

  • Avenet P, Lindemann B (1987) Patch-clamp study of isolated taste receptor cells of the frog. J Membr Biol 97:223–240

    CAS  PubMed  Google Scholar 

  • Avenet P, Lindemann B (1988) Amiloride-blockable sodium currents in isolated taste receptor cells. J Membr Biol 105:245–255

    CAS  PubMed  Google Scholar 

  • Avenet P, Hofmann F, Lindemann B (1988) Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature 331:351–354

    CAS  PubMed  Google Scholar 

  • Bigiani A, Sbarbati A, Osculati F, Pietra P (1998) Electrophysiological characterization of a putative supporting cell isolated from the frog taste disk. J Neurosci 18:5136–5150

    CAS  PubMed  Google Scholar 

  • Briggman JV, Graves JS, Spicer SS, Cragoe EJ Jnr (1983) The intracellular localization of amiloride in frog skin. Histochem J 15:239–255

    CAS  PubMed  Google Scholar 

  • Brown D, Breton S (2000) Sorting proteins to their target membranes. Kidney Int 57:816–824

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt G, Wolff NA (2000) Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol 278:F853–F866

    CAS  PubMed  Google Scholar 

  • Caicedo A, Roper SD (2001) Taste receptor cells that discriminate between bitter stimuli. Science 291:1557–1560

    Article  CAS  PubMed  Google Scholar 

  • Caicedo A, Jafri MS, Roper SD (2000a) In situ Ca2+ imaging reveals neurotransmitter receptors for glutamate in taste receptor cells. J Neurosci 20:7978–7985

    CAS  PubMed  Google Scholar 

  • Caicedo A, Kim KN, Roper SD (2000b) Glutamate-induced cobalt uptake reveals non-NMDA receptors in rat taste cells. J Comp Neurol 417:315–324

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357

    Article  CAS  PubMed  Google Scholar 

  • Eisenhofer G (2001) The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91:35–62

    CAS  PubMed  Google Scholar 

  • Guatimosim C, Gersdorff H von (2002) Optical monitoring of synaptic vesicle trafficking in ribbon synapses. Neurochem Int 41:307

    Article  CAS  PubMed  Google Scholar 

  • Henkel AW, Lubke J, Betz WJ (1996) FM1–43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc Natl Acad Sci USA 93:1918–1923

    Article  CAS  PubMed  Google Scholar 

  • Jakob I, Hauser I, Thevenod F, Lindemann B (1998) MDR1 p-glycoprotein in taste buds of rat vallate papilla: functional, immunohistochemical and biochemical evidence. Am J Physiol 274:C182-C191

    CAS  PubMed  Google Scholar 

  • Kaneko H, Nakamura T, Lindemann B (2001) Non-invasive measurement of the chloride concentration in rat olfactory receptor cells, using a fluorescent dye. Am J Physiol 280:C1387-C1393

    CAS  Google Scholar 

  • Kleyman TR, Cragoe EJ Jnr (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    CAS  PubMed  Google Scholar 

  • Koncz C, Daugirdas JT (1994) Use of MQAE for measurement of intracellular [Cl] in cultured aortic smooth muscle cells. Am J Physiol 267:H2114–H2123

    CAS  PubMed  Google Scholar 

  • Kretz O, Barbry P, Bock R, Lindemann B (1999) Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J Histochem Cytochem 47:51–64

    CAS  PubMed  Google Scholar 

  • Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA (1998) Validation of lucigenin (bis-n-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem 273:2015–2023

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B (1997) Sodium taste. Curr Opin Nephrol Hypertension 6:425–429

    CAS  Google Scholar 

  • Lindemann B (2001) Receptors and transduction in taste. Nature 413:219–225.

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B, Gilbertson TA, Kinnamon SC (1999) Amiloride sensitive sodium channels in taste. In: Benos DJ (ed) Amiloride sensitive sodium channels: physiology and functional diversity. Academic Press, San Diego, pp 315–336

  • Liu CY, Zhang H, Christofi FL (1998) Adenylyl cyclase co-distribution with the CABPS, calbindin-d28 and calretinin, varies with cell type: assessment with the fluorescent dye, bodipy forskolin, in enteric ganglia. Cell Tissue Res 293:57–73

    Article  CAS  PubMed  Google Scholar 

  • Lobel D, Jacob M, Volkner M, Breer H (2002) Odorants of different chemical classes interact with distinct odorant binding protein subtypes. Chem Senses 27:39–44

    Article  CAS  PubMed  Google Scholar 

  • Menco BP, Bruch RC, Dau B, Danho W (1992) Ultrastructural localization of olfactory transduction components: the G protein subunit Golf alpha and type III adenylyl cyclase. Neuron 8:441–453

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Miyazaki T, Fujiyama R, Okada Y, Sato T (2001) Differential transduction mechanisms underlying NaCl- and KCl-induced responses in mouse taste cells. Chem Senses 26:67–77

    Article  CAS  PubMed  Google Scholar 

  • Molecular Probes (2002) Home page. http://www.probes.com/

  • Mostov KE, Verges M, Altschuler Y (2000) Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol 12:483–490

    Article  CAS  PubMed  Google Scholar 

  • Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J (2001) Rapid cycling of lipid raft markers between the cell surface and golgi complex. J Cell Biol 153:529–541

    CAS  PubMed  Google Scholar 

  • Nicholson C, Tao L (1993) Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J 65:2277–2290

    CAS  Google Scholar 

  • Novotny WF, Chassande O, Baker M, Lazdunski M, Barbry P (1994) Diamine oxidase is the amiloride-binding protein and is inhibited by amiloride analogues. J Biol Chem 269:9921–9925

    CAS  PubMed  Google Scholar 

  • Okada CY, Rechsteiner M (1982) Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell 29:33–41

    CAS  PubMed  Google Scholar 

  • Osculati F, Sbarbati A (1995) The frog taste disk: a prototype of the vertebrate gustatory organ. Prog Neurobiol 46:351–399

    Article  CAS  PubMed  Google Scholar 

  • Richter H-P, Avenet P, Mestres P, Lindemann B (1988) Gustatory receptors and neighbouring cells in the surface layer of an amphibian taste disc: in situ relationships and response to cell isolation. Cell Tissue Res 254:83–96

    Google Scholar 

  • Sbarbati A, Crescimanno C, De Rossi V, Bernardi P, Osculati F (1999) NADPH-diaphorase and NOS-1 positive ganglion cells are found in the rat vallate papilla/von Ebner gland complex. Histochem J 31:417–424

    Article  CAS  PubMed  Google Scholar 

  • Sbarbati A, Crescimanno C, Bernardi P, Benati D, Merigo F, Osculati F (2000) Postnatal development of the intrinsic nervous system in the circumvallate papilla-von Ebner gland complex. Histochem J 32:483–488.

    Article  CAS  PubMed  Google Scholar 

  • Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci USA 78:3363–3367

    CAS  Google Scholar 

  • Simchowitz L, Woltersdorf OW Jnr, Cragoe EJ Jnr (1987) Intracellular accumulation of potent amiloride analogues by human neutrophils. J Biol Chem 262:15875–15885

    CAS  PubMed  Google Scholar 

  • Stevens DR, Seifert R, Bufe B, Muller F, Kremmer E, Gauss R, Meyerhof W, Kaupp UB, Lindemann B (2001) Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413:631–635

    Article  CAS  PubMed  Google Scholar 

  • Swanson J (1989) Fluorescent labeling of endocytic compartments. Methods Cell Biol 29:137–151

    CAS  PubMed  Google Scholar 

  • Tominaga T, Tominaga Y, Yamada H, Matsumoto G, Ichikawa M (2000) Quantification of optical signals with electrophysiological signals in neural activities of di-4-ANEPPS stained rat hippocampal slices. J Neurosci Methods 102:11–23

    Article  CAS  PubMed  Google Scholar 

  • Tonder GJ van, Ejima Y (2000) Bottom-up clues in target finding: why a dalmatian may be mistaken for an elephant. Perception 29:149–157

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Andrea Sbarbati for valuable advice regarding the morphological details of taste disks, Albertino Bigiani for generously providing the frogs, and Markus Hoth and Eberhard Tutsch for advice regarding multi-photon microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Lindemann.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 530, project B2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.HY., Lindemann, B. Multi-photon microscopy of cell types in the viable taste disk of the frog. Cell Tissue Res 313, 11–27 (2003). https://doi.org/10.1007/s00441-003-0725-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0725-1

Keywords

Navigation