Skip to main content

Advertisement

Log in

Differential expression pattern of chloride transporters NCC, NKCC2, KCC1, KCC3, KCC4, and AE3 in the developing rat auditory brainstem

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

During development of inhibitory synapses, the action of the two neurotransmitters GABA and glycine shifts from depolarizing to hyperpolarizing. The shift is due to an age-dependent regulation of the intracellular free chloride concentration ([Cl]i) in postsynaptic neurons. A model system to study this maturation process is a glycinergic projection in the mammalian auditory brainstem. It is formed in the superior olivary complex (SOC) by neurons of the medial nucleus of the trapezoid body, whose axons terminate in the lateral superior olive (LSO). LSO neurons of perinatal rats and mice are depolarized upon glycine application, whereas older cells (>postnatal day (P) 8) are hyperpolarized. Here we examined the expression of six secondary active chloride transporter genes (NCC, NKCC2, KCC1, KCC3, KCC4, and AE3) in the rat SOC to unravel the molecular mechanisms underlying this change. RT-PCR analysis demonstrated brainstem expression of KCC1, KCC3, KCC4, and AE3, but not of NCC and NKCC2. RNA in situ hybridization showed that only AE3 is highly expressed both at P3 (high [Cl]i) and P12 (low [Cl]i) in LSO neurons. KCC1 and KCC4 are weakly expressed in LSO neurons at P3 and P12, respectively. This study completes the expression analysis of all known chloride transporters sensitive to loop diuretic drugs in the SOC and demonstrates differences in the maturation between hippocampal and brainstem inhibitory synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–D.
Fig. 3A–D.
Fig. 4A–D.
Fig. 5.
Fig. 6A–D.

Similar content being viewed by others

References

  • Aickin CC (1990) Chloride transport across the sarcolemma of vertebrate smooth and skeletal muscle. In: Alvarez-Leefmans FJ, Russell JM (eds) Chloride channels and carriers in nerve, muscle and glial cells. Plenum, New York, pp 209–249

  • Alvarez-Leefmans FJ (1990) Intracellular Cl regulation and synaptic inhibition in vertebrate and invertebrate neurons. In: Alvarez-Leefmans FJ, Russell JM (eds) Chloride channels and carriers in nerve, muscle and glial cells. Plenum, New York, pp 109–158

  • Alvarez-Leefmans FJ (2001) Intracellular chloride regulation. In: Sperelakis N (ed) Cell physiology sourcebook: a molecular approach. Academic, New York, pp 301–318

    Google Scholar 

  • Balakrishnan V, Becker M, Löhrke S, Nothwang HG, Güresir E, Friauf E (2003) Expression and function of chloride transporters during development of inhibitory neurotransmission in the auditory brainstem. J Neurosci (in press)

  • Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24:353–360

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Cherubini E, Corradetti R, Galarsa J-L (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol (Lond) 416:303–325

    Google Scholar 

  • Boguski MS (1995) The turning point in genome research. Trends Biochem Sci 20:295–296

    Article  CAS  PubMed  Google Scholar 

  • Brazy PC, Gunn RB (1976) Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol 68:583–599

    CAS  PubMed  Google Scholar 

  • Cherubini E, Rovira C, Gaiarsa JL, Corradetti R, Ben-Ari Y (1990) GABA mediated excitation in immature rat CA3 hippocampal neurons. Int J Dev Neurosci 8:481–490

    CAS  PubMed  Google Scholar 

  • Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519

    CAS  PubMed  Google Scholar 

  • Clayton GH, Owens GC, Wolff JS, Smith RL (1998) Ontogeny of cation-Cl-cotransporter expression in rat neocortex. Brain Res 109:281–292

    Article  CAS  Google Scholar 

  • Delpire E (2000) Cation-chloride cotransporters in neuronal communication. News Physiol Sci 15:309–312

    CAS  PubMed  Google Scholar 

  • Delpire E, Mount DB (2002) Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu Rev Physiol 64:803–843

    Google Scholar 

  • Ehrlich I, Löhrke S, Friauf E (1999) Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurons is due to age-dependent Cl regulation. J Physiol 520:121–137

    CAS  PubMed  Google Scholar 

  • Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Hediger MA, Brenner BM, Hebert SC (1993) Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci U S A 90:2749–2753

    CAS  PubMed  Google Scholar 

  • Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC (1994) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 269:17713–17722

    CAS  PubMed  Google Scholar 

  • Garon L, Rousseau F, Gagnon E, Isenring P (2000) Cloning and functional characterization of a cation-Cl-cotransporter-interacting protein. J Biol Chem 275:32027–32036

    Article  PubMed  Google Scholar 

  • Gillen CM, Brill S, Payne JA, Forbush BI (1996) Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat and human. A new member of the cation-chloride cotransporter family. J Biol Chem 271:16236–16244

    Google Scholar 

  • Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610

    Article  CAS  PubMed  Google Scholar 

  • Gunn RB (1985) Bumetanide inhibition of anion exchange in human red blood cells. Biophys J 47:326a

    Google Scholar 

  • Helfert RH, Snead CR, Altschuler RA (1991) The ascending auditory pathways. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds) Neurobiology of hearing: the central auditory system. Raven, New York, pp 1–25

    Google Scholar 

  • Hiki K, D'Andrea RJ, Furze J, Crawford J, Woollatt E, Sutherland GR, Vadas MA, Gamble JR (1999) Cloning, characterization, and chromosomal location of a novel human K+-Cl cotransporter. J Biol Chem 274:10661–10667

    CAS  PubMed  Google Scholar 

  • Hübner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524

    Article  PubMed  Google Scholar 

  • Kakazu Y, Akaike N, Komiyama S, Nabekura J (1999) Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J Neurosci 19:2843–2851

    CAS  PubMed  Google Scholar 

  • Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1, 2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946

    Article  CAS  PubMed  Google Scholar 

  • Kandler K, Friauf E (1995) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J Neurosci 15:6890–6904

    CAS  PubMed  Google Scholar 

  • Klinke R, Silbernagl S (2001) Lehrbuch der Physiologie, 3rd edn. Thieme, Stuttgart

  • Kopito RR, Lee BS, Simmons DM, Lindsey AE, Morgans CW, Schneider K (1989) Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell 59:927–937

    CAS  PubMed  Google Scholar 

  • Kudrycki KE, Newman PR, Shull GE (1990) cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the band 3 Cl/HCO3 exchanger. J Biol Chem 265:462–471

    CAS  PubMed  Google Scholar 

  • Kullmann PHM, Kandler K (2001) Glycinergic/GABAergic synapses in the lateral superior olive are excitatory in neonatal C57Bl/6J mice. Brain Res 131:143–147

    Article  CAS  Google Scholar 

  • Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793

    CAS  PubMed  Google Scholar 

  • Linn SC, Kudrycki KE, Shull GE (1992) The predicted translation product of a cardiac AE3 mRNA contains an N terminus distinct from that of the brain AE3 Cl/HCO3 exchanger. Cloning of a cardiac AE3 cDNA, organization of the AE3 gene, and identification of an alternative transcription initiation site. J Biol Chem 267:7927–7935

    CAS  PubMed  Google Scholar 

  • Lo Turco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    PubMed  Google Scholar 

  • Lu J, Karadsheh M, Delpire E (1999) Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol 39:558–568

    Article  CAS  PubMed  Google Scholar 

  • Luhmann HJ, Prince DA (1991) Postnatal maturation of the GABAergic system in rat neocortex. J Neurophysiol 65:247–263

    CAS  PubMed  Google Scholar 

  • Marty S, Wehrle R, Alvarez-Leefmans FJ, Gasnier B, Sotelo C (2002) Postnatal maturation of Na+, K+, 2Cl cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis. Eur J Neurosci 15:233–245

    Article  PubMed  Google Scholar 

  • Mehta AK, Ticku MK (1999) An update on GABA(A) receptors. Brain Res Rev 29:196–217

    CAS  PubMed  Google Scholar 

  • Mount DB, Mercado A, Song LY, Xu J, George AL, Delpire E, Gamba G (1999) Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem 274:16355–16362

    CAS  PubMed  Google Scholar 

  • Owens DF, Boyce LH, Davis MB, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423

    Google Scholar 

  • Payne JA, Forbush B III (1994) Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney. Proc Natl Acad Sci U S A 91:4544–4548

    CAS  PubMed  Google Scholar 

  • Pearson MM, Lu J, Mount DB, Delpire E (2001) Localization of the K(+)-Cl(−) cotransporter, KCC3, in the central and peripheral nervous systems: expression in the choroid plexus, large neurons and white matter tracts. Neuroscience 103:481–491

    Article  CAS  PubMed  Google Scholar 

  • Plotkin MD, Snyder EY, Hebert SC, Delpire E (1997) Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA's excitatory role in immature brain. J Neurobiol 33:781–795

    Article  CAS  PubMed  Google Scholar 

  • Race JE, Makhlouf FN, Logue PJ, Wilson FH, Dunham PB, Holtzman EJ (1999) Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. Am J Physiol-Cell Physiol 277:C1210–C1219

    CAS  Google Scholar 

  • Raley-Susman KM, Sapolsky RM, Kopito RR (1993) Cl/HCO3 exchange function differs in adult and fetal rat hippocampal neurons. Brain Res 614:308–314

    CAS  PubMed  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    CAS  PubMed  Google Scholar 

  • Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276

    CAS  PubMed  Google Scholar 

  • Shen MR, Chou CY, Hsu KF, Liu HS, Dunham PB, Holtzman EJ, Ellory JC (2001) The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation. Proc Natl Acad Sci U S A 98:14714–14719

    Article  CAS  PubMed  Google Scholar 

  • Singer JH, Talley EM, Bayliss DA, Berger AJ (1998) Development of glycinergic synaptic transmission to rat brain stem motoneurons. J Neurophysiol 80:2608–2620

    CAS  PubMed  Google Scholar 

  • Spitzer NC, Kingston PA, Manning TJ Jr, Conklin MW (2002) Outside and in: development of neuronal excitability. Curr Opin Neurobiol 12:315–323

    Article  CAS  PubMed  Google Scholar 

  • Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E (2000) Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci 20:7531–7538

    CAS  PubMed  Google Scholar 

  • Ueno T, Okabe A, Akaike N, Fukuda A, Nabekura J (2002) Diversity of neuron-specific K+-Cl cotransporter expression and inhibitory postsynaptic potential depression in rat motoneurons. J Biol Chem 277:4945–4950

    Article  CAS  PubMed  Google Scholar 

  • Vaughan-Jones RD (1986) An investigation of chloride-bicarbonate exchange in the sheep cardiac Purkinje fibre. J Physiol (Lond) 379:377–406

    Google Scholar 

  • Wisden W, Morris BJ, Hunt SP (1991) In situ hybridization with synthetic DNA probes. In: Chad J, Wheal H (eds) Molecular neurobiology—a practical approach. IRL, Oxford, pp 205–225

  • Wu WI, Ziskind-Conhaim L, Sweet MA (1992) Early development of glycine- and GABA-mediated synapses in rat spinal cord. J Neurosci 12:3935–3945

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Kornelia Ociepka for expert help with the in situ hybridization and Ulrike Sommerlad for help with the RT-PCR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Friauf.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 530 grant to E.F.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, M., Nothwang, H.G. & Friauf, E. Differential expression pattern of chloride transporters NCC, NKCC2, KCC1, KCC3, KCC4, and AE3 in the developing rat auditory brainstem. Cell Tissue Res 312, 155–165 (2003). https://doi.org/10.1007/s00441-003-0713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0713-5

Keywords

Navigation