Skip to main content

Advertisement

Log in

Role of epidermal growth factor and epidermal growth factor receptor on hemidesmosome complex formation and integrin subunit β4

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract.

Epidermal growth factor (EGF) stimulates integrin β4 expression and synthesis in corneal epithelium through ligand binding to the EGF receptor, receptor dimerization and activation of the intracellular domain. We hypothesized that inhibition of EGF receptor messenger RNA (mRNA) would block integrin β4 expression, which is induced by EGF. We also tested the hypothesis that EGF would cause the degradation of hemidesmosomes in control and injured corneal organ cultures. Primary rabbit corneal epithelial cell cultures or corneas were cultured in keratinocyte medium in the presence or absence of an antisense 20-mer phosphorothioate oligonucleotide complementary to the initiation codon region of EGF receptor mRNA. Cells were also cultured in the presence or absence of EGF. Sense and scrambled oligonucleotides similarly modified were used as controls. The concentration of EGF receptor mRNA was semiquantitatively determined by reverse transcriptase/polymerase chain reaction (RT-PCR). We found that transfection did inhibit EGFR expression and migration of epithelial cells and also demonstrated that EGFR mediated expression of integrin β4 mRNA. Injury induced a decrease in hemidesmosomes that was enhanced with EGF but was not caused by the presence of growth factor in unwounded tissue. These results indicate that injury causes the activation of EGFR but that EGF alone is not responsible for the degradation of hemidesmosomes and that other growth factors play a role in the complex repair of wounds in an avascular tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5.
Fig. 6A, B.
Fig. 7.
Fig. 8A, B.
Fig. 9A, B.
Fig. 10A, B.

Similar content being viewed by others

References

  • Akimoto Y, Obinata A, Endo H, Hirano H (1988) Epidermal growth factor (EGF) induced morphological changes in the basement membrane of chick embryonic skin. An electronic microscopic study. Cell Tissue Res 254:481–485

    CAS  PubMed  Google Scholar 

  • Barrandon Y, Green H (1987) Cell migration is essential for sustained growth of keratinocyte colonies: the role of transforming growth factor-alpha and epidermal growth factor. Cell 50:1131–1137

    CAS  PubMed  Google Scholar 

  • Bennett NT, Schultz G (1993) Growth factors and wound healing: part II. Role in normal and chronic wound healing. Am J Surg 166:74–81

    CAS  PubMed  Google Scholar 

  • Bogdan S, Klambt C ( 2001) Epidermal growth factor receptor signaling. Curr Biol 11:R292–R295

    Article  CAS  PubMed  Google Scholar 

  • Cadena DL, Gill GN (1992) Receptor tyrosine kinases. FASEB J 6:2332–2337

    CAS  PubMed  Google Scholar 

  • Carpenter G (1984) Properties of the receptor for epidermal growth factor. Cell 37:357–358

    CAS  PubMed  Google Scholar 

  • Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265:7709–7712

    CAS  PubMed  Google Scholar 

  • Carraway KL III, Seeney C (2001) Localization and modulation of ErB receptor tyrosine kinases. Curr Opin Cell Biol 13:125–130

    Article  CAS  PubMed  Google Scholar 

  • Carraway KL 3rd, Rossi EA, Komatsu M, Price-Schiavi SA, Huang D, Guy PM, Carvajal ME, Fregien N, Carraway CA, Carraway KL (1999) An intramembrane modulator of the ErbB2 receptor tyrosine kinase that potentiates neuregulin signaling. J Biol Chem 274:5263–5266

    Article  CAS  PubMed  Google Scholar 

  • Catterton WZ, Escobedo MB, Sexson WR, Gray ME, Sundell HW, Stahlman MT (1979) Effect of growth factor on lung maturation in fetal rabbits. Pediatr Res 13:104–108

    CAS  PubMed  Google Scholar 

  • Chen WS, Lazar CS, Poenine M, Tsien RY, Gill GN, Rosenfeld MG (1987) Requirement for intrinsic protein tyrosine kinase in immediate and late actions of EGF receptor. Nature 328:820–823

    CAS  PubMed  Google Scholar 

  • Clark EA, Hynes RO (1996) Ras activation is necessary for integrin-mediated activation of extracellular signal-regulated kinase2 and cytosolic phospholipase A2 but not for cytoskeletal organization. J Biol Chem 271:14814–14818

    Article  CAS  PubMed  Google Scholar 

  • Cochet C, Filhol O, Payrastre B, Hunter T, Gill GN (1991) Interaction between the epidermal growth factor receptor and phosphoinositide kinases. J Biol Chem 266:637–644

    CAS  PubMed  Google Scholar 

  • Gagnoux-Palacios L, Vailly J, Durand-Clement M, Wagner E, Ortonne JP, Meneguzzi G (1996) Functional re-expression of laminin-5 in laminin-gamma2-deficient human keratinocytes modifies cell morphology, motility, and adhesion. J Biol Chem 271:18437–1844

    Article  CAS  PubMed  Google Scholar 

  • Giancotti FG (1996) Signal transduction by the alpha 6 beta 4 integrin: charting the path between laminin binding and nuclear events. J Cell Sci 109:1165–1172

    CAS  PubMed  Google Scholar 

  • Giancotti FG (2000) Complexity and specificity of integrin signalling. Nat Cell Biol 2:E13–E14

    CAS  PubMed  Google Scholar 

  • Gipson IK, Inatomi T (1995) Extracellular matrix and growth factors in corneal wound healing. Curr Opin Ophthalmol 6:3–10

    CAS  Google Scholar 

  • Gipson IK, Grill SM, Spurr SJ, Brennan SJ (1983) Hemidesmosome formation in vitro. J Cell Biol 97:849–857

    CAS  PubMed  Google Scholar 

  • Grushkin-Lerner LS, Kewalramani R, Trinkaus-Randall V (1997) Expression of integrin receptors on plasma membranes of primary corneal epithelial cells is matrix specific. Exp Eye Res 64:323–334

    Article  CAS  PubMed  Google Scholar 

  • Hebda PA (1988) Stimulatory effects of transforming growth factor beta and epidermal growth factor on epidermal cell outgrowth from porcine skin explants cultures. J Invest Dermatol 91:440–445

    Google Scholar 

  • Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M (1991) A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 251:936–939

    CAS  PubMed  Google Scholar 

  • Ho PC, Davis WH, Elliott JH, Cohen S (1974) Kinetics of corneal epithelial regeneration and epidermal growth factor. Invest Ophthalmol 13:804–809

    Google Scholar 

  • Jones JC, Kurpakus MA, Cooper HM, Quaranta V (1991) A function for the integrin alpha 6 beta 4 in the hemidesmosome. Cell Reg 2:427–438

    CAS  Google Scholar 

  • King RJ, Jones MB, Minoo P (1989) Regulation of lung cell proliferation by polypeptide growth factors. Am J Physiol 257:23–38

    Google Scholar 

  • Klein JM, Troy A, McCarthy, Dagle JM, Snyder JM (2000) Antisense inhibition of epidermal growth factor receptor decreases expression of human surfactant protein A. Am J Respir Cell Mol Biol 22:676–684

    CAS  PubMed  Google Scholar 

  • Klepeis VE, Cornell-Bell A, Trinkaus-Randall V (2001) Growth factors but not gap junctions play a role in injury-induced Ca2+ waves in epithelial cells. J Cell Sci 114:4185–4195

    CAS  PubMed  Google Scholar 

  • Kurpakus MA, Quaranta V, Jones JC (1991) Surface relocation of alpha6 beta4 integrins and assembly of hemidesmosomes in an in vitro model of wound healing. J Cell Biol 115:1737–1750

    CAS  PubMed  Google Scholar 

  • Lawrence JB, Singer RH (1986) Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 45:407–415

    CAS  PubMed  Google Scholar 

  • Leibowitz HM, Morello S Jr, Stern M, Kupferman A (1991) Effect of topically administered epidermal growth factor on corneal wound strength. Arch Ophthalmol 108:734–737

    Google Scholar 

  • Mainiero F, Pepe A, Wary KK, Spinardi L, Mohammadi M, Schlessinger J, Giancotti FG (1995) Signal transduction by the alpha 6 beta 4 integrin: distinct beta 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMBO J 15:4470–4481

    Google Scholar 

  • Mainiero F, Pepe A, Yeon M, Ren Y, Giancotti FG (1996) The intracellular functions of alpha6beta4 integrin are regulated by EGF. J Cell Biol 134:241–253

    CAS  PubMed  Google Scholar 

  • Mariotti A, Kedeshian PA, Dans M, Curatola AM, Gagnoux-Palacios L, Giancotti FG (2001) EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J Cell Biol 29:447–458

    Article  Google Scholar 

  • Niessen CM, Hulsman EH, Oomen LC, Kuikman I, Sonnenberg A (1997) A minimal region on the integrin beta4 subunit that is critical to its localization in hemidesmosomes regulates the distribution of HD1/plectin in COS-7 cells. J Cell Sci 110:1705–1716

    CAS  PubMed  Google Scholar 

  • Payne J, Gong H, Trinkaus-Randall V (2000) Tyrosine phosphorylation: a critical component in the formation of hemidesmosomes. Cell Tissue Res 300:401–411

    CAS  PubMed  Google Scholar 

  • Potts JD, Dagle JM, Walder JA, Weeks DL, Runyan RB (1991) Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor beta 3. Proc Natl Acad Sci U S A 88:1516–1520

    CAS  PubMed  Google Scholar 

  • Rabinovitz I, Mercurio AM (1997) The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol 139:1873–1884

    Google Scholar 

  • Rabinovitz I, Toker A, Mercurio AM (1999) Protein kinase C-dependent mobilization of the alpha6beta4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells. J Cell Biol 146:1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Richardson TP, Trinkaus-Randall V, Nugent MA (2001) Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. J Cell Sci 114:1613–1623

    CAS  PubMed  Google Scholar 

  • Savage CR Jr, Cohen S (1973) Proliferation of corneal epithelium induced by epidermal growth factor. Exp Eye Res 15:361–366

    CAS  PubMed  Google Scholar 

  • Schultz G, Rotatori DS, Clark W (1991) EGF and TGF-alpha in wound healing and repair. J Cell Biochem 45:346–352

    CAS  PubMed  Google Scholar 

  • Schultz G, Chegini N, Grant M, Khaw P, MacKay S (1992) Effects of growth factors on corneal wound healing. Acta Ophthalmol Suppl 202:60–66

    PubMed  Google Scholar 

  • Seth R, Shum L, Wu F, Wuenschell C, Hall FL, Slavkin HC, Warburton D (1993) Role of epidermal growth factor expression in early mouse embryo lungbranching morphogenesis in culture: antisense oligodeoxynucleotide inhibitory strategy. Dev Biol 158:555–559

    Article  CAS  PubMed  Google Scholar 

  • Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM (1997) Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 91:949–960

    CAS  PubMed  Google Scholar 

  • Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ (1989) Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 243:1074–1076

    CAS  PubMed  Google Scholar 

  • Song QH, Singh RP, Richardson TP, Nugent MA, Trinkaus-Randall V (2000) Transforming growth factor-beta1 expression in cultured corneal fibroblasts in response to injury. J Cell Biochem 77:186–199

    CAS  PubMed  Google Scholar 

  • Song QH, Singh RP, Trinkaus-Randall V (2001) Injury and EGF mediate the expression of alpha6beta4 integrin subunits in corneal epithelium. J Cell Biochem 80:397–411

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg A, Calafat J, Janssen H, Daams H, van der Raaij-Helmer LM, Falcioni R, Kennel SJ, Aplin JD, Baker J, Loizidou M, et al. (1991) Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol 113:907–917

    CAS  PubMed  Google Scholar 

  • Spinardi L, Einheber S, Cullen T, Milner TA, Giancotti FG (1995) A recombinant tail-less integrin beta 4 subunit disrupts hemidesmosomes, but does not suppress alpha 6 beta 4-mediated cell adhesion to laminins. J Cell Biol 129:473–487

    CAS  PubMed  Google Scholar 

  • Stepp MA, Spurr-Michaud S, Tisdale A, Elwell J, Gipson IK (1990) Alpha 6 beta4 integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci U S A 87:8970–8974

    CAS  PubMed  Google Scholar 

  • Todderud G, Carpenter G (1988) Presence of mannose phosphate on the epidermal growth factor receptor in A-431 cells. J Biol Chem 263:17893–17896

    CAS  PubMed  Google Scholar 

  • Trinkaus-Randall V, Gipson IK (1984) Role of calcium and calmodulin in hemidesmosome formation in vitro. J Cell Biol 98:1565–1571

    CAS  PubMed  Google Scholar 

  • Trinkaus-Randall V, Newton AW, Franzblau C (1990) The synthesis and role of integrin in corneal epithelial cells in culture. Invest Ophthalmol Vis Sci 31:440–447

    Google Scholar 

  • Trinkaus-Randall V, Tong M, Thomas P, Cornell-Bell A (1993) Confocal imaging of the alpha 6 and beta 4 integrin subunits in the human cornea with aging. Invest Ophthalmol Vis Sci 34:3103–3109

    Google Scholar 

  • Trinkaus-Randall V, Edelhauser HF, Leibowitz H, Freddo TF (1998) Corneal structure and function, chap 1. In: Leibowitz HM, Waring GO (eds) Corneal disorders, clinical diagnosis and management. WB Saunders, Philadelphia, PA, pp 2–32

  • Trinkaus-Randall V, Kewalramani R, Payne J, Cornell-Bell A (2000) Calcium signaling induced by adhesion mediates protein tyrosine phosphorylation and is independent of pHi. J Cell Physiol 2000:385–399

    Article  Google Scholar 

  • Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–425

    CAS  PubMed  Google Scholar 

  • Watanabe K, Nakagawa S, Nishida T (1987) Stimulatory effects of fibronectin and EGF on migration of corneal epithelial cells. Invest Ophthalmol Vis Sci 28:205–211

    Google Scholar 

  • Wells A (1999) Molecules in focus EGF receptor. Int J Biochem Cell Biol 31:637–643

    Article  CAS  PubMed  Google Scholar 

  • Wilson AJ, Gibson PR (1999) Role of epidermal growth factor receptor in basal and stimulated colonic epithelial cell migration in vitro. Exp Cell Res 250:187–196

    Article  CAS  PubMed  Google Scholar 

  • Wilson SE, He YG, Lloyd SA (1992a) EGF, EGF receptor, basic FGF, TGF-beta1 and Il-1 alpha mRNA in human corneal epithelial cells and stromal fibroblasts. Invest Ophthalmol Vis Sci 33:1756–1765

    Google Scholar 

  • Wilson SE, Lloyd SA, He YG (1992b) EGF, basic FGF and TGF beta-1 mRNA production in rabbit corneal epithelial cells. Invest Ophthalmol Vis Sci 33:1987–1995

    Google Scholar 

  • Zieske JD, Wasson M (1993) Regional variation in distribution of EGF receptor in developing and adult corneal epithelium. J Cell Sci 106:145–152

    CAS  PubMed  Google Scholar 

  • Zieske JD, Takahashi H, Hutcheon AE, Dalbone AC (2000) Activation of epidermal growth factor receptor during corneal epithelial migration. Invest Ophthalmol Vis Sci 41:1346–1355

    Google Scholar 

Download references

Acknowledgements.

We thank Johanna Payne and Rozanne Richmond for excellent technical assistance and Veronica Klepeis for critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Trinkaus-Randall.

Additional information

This work was supported by NEI grant EY06000 (V.T.-R.) and by departmental grants from the Massachusetts Lions Eye Research Fund, Research to Prevent Blindness, Inc., and the New England Corneal Transplant Fund

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Q.H., Gong, H. & Trinkaus-Randall, V. Role of epidermal growth factor and epidermal growth factor receptor on hemidesmosome complex formation and integrin subunit β4. Cell Tissue Res 312, 203–220 (2003). https://doi.org/10.1007/s00441-002-0693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-002-0693-x

Keywords

Navigation