Skip to main content

Advertisement

Log in

Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The vanilloid receptor VR1 is a nonselective cation channel activated by capsaicin as well as increases in temperature and acidity, and can be viewed as molecular integrator of chemical and physical stimuli that elicit pain. The distribution of VR1 receptors in peripheral and central processes of rat primary vagal afferent neurons innervating the gastrointestinal tract was investigated by immunohistochemistry. Forty-two percent of neurons in the nodose ganglia retrogradely labeled from the stomach wall expressed low to moderate VR1 immunoreactivity (VR1-IR). VR1-IR was considerably lower in the nodose ganglia as compared to the jugular and dorsal root ganglia. In the vagus nerve, strongly VR1-IR fibers ran in separate fascicles that supplied mainly cervical and thoracic targets, leaving only weakly VR1-IR fibers in the subdiaphragmatic portion. Vagal afferent intraganglionic laminar endings (IGLEs) in the gastric and duodenal myenteric plexus did not express VR1-IR. Similarly, VR1-IR was contained in fibers running in perfect register with vagal afferents, but was not colocalized with horseradish peroxidase in the same varicosities of intramuscular arrays (IMAs) and vagal afferent fibers in the duodenal submucosa anterogradely labeled from the nodose ganglia. Only in the gastric mucosa did we find evidence for colocalization of VR1-IR in vagal afferent terminals. In contrast, many nerve fibers coursing through the myenteric and submucosal plexuses contained detectable VR1-IR, the majority of which colocalized calcitonin gene-related peptide immunoreactivity. In the dorsal medulla there was a dense plexus of VR1-IR varicose fibers in the commissural, dorsomedial and gelatinosus subnuclei of the medial NTS and the lateral aspects of the area postrema, which was substantially reduced, but not eliminated on the ipsilateral side after supranodose vagotomy. It is concluded that about half of the vagal afferents innervating the gastrointestinal tract express low levels of VR1-IR, but that presence in most of the peripheral terminal structures is below the immunohistochemical detection threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–I.
Fig. 2.
Fig. 3A–D.
Fig. 4A–H.
Fig. 5A–H.
Fig. 6.

Similar content being viewed by others

References

  • Anavi-Goffer S, McKay NG, Ashford ML, Coutts AA (2002) Vanilloid receptor type 1-immunoreactivity is expressed by intrinsic afferent neurones in the guinea-pig myenteric plexus. Neurosci Lett 319:53–57

    CAS  PubMed  Google Scholar 

  • Anton PM, Theodorou V, Fioramonti J, Bueno L (2001) Chronic low-level administration of diquat increases the nociceptive response to gastric distension in rats: role of mast cells and tachykinin receptor activation. Pain 92:219–227

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR, Powley TL (1992) Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol 319:261–276

    CAS  PubMed  Google Scholar 

  • Berthoud HR, Neuhuber WL (2000) Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85:1–17

    CAS  PubMed  Google Scholar 

  • Berthoud HR, Kressel M, Raybould HE, Neuhuber WL (1995) Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat Embryol (Berl) 191:203–212

    Google Scholar 

  • Berthoud HR, Patterson LM, Neumann F, Neuhuber WL (1997) Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat Embryol (Berl) 195:183–191

    Google Scholar 

  • Berthoud HR, Lynn PA, Blackshaw LA (2001) Vagal and spinal mechanosensors in the rat stomach and colon have multiple receptive fields. Am J Physiol Regul Integr Comp Physiol 280:R1371–R1381

    CAS  PubMed  Google Scholar 

  • Bielefeldt K (2000) Differential effects of capsaicin on rat visceral sensory neurons. Neuroscience 101:727–736

    Article  CAS  PubMed  Google Scholar 

  • Blackshaw LA, Grundy D (1990) Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J Auton Nerv Syst 31:191–201

    CAS  PubMed  Google Scholar 

  • Blackshaw LA, Page AJ, Partosoedarso ER (2000) Acute effects of capsaicin on gastrointestinal vagal afferents. Neuroscience 96:407–416

    Article  CAS  PubMed  Google Scholar 

  • Calatayud S, Barrachina MD, Garcia-Zaragoza E, Quintana E, Esplugues JV (2001) Endotoxin inhibits gastric emptying in rats via a capsaicin-sensitive afferent pathway. Naunyn Schmiedebergs Arch Pharmacol 363:276–280

    CAS  PubMed  Google Scholar 

  • Carlton SM, Coggeshall RE (2001) Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization. Neurosci Lett 310:53–56

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313.

    Article  CAS  PubMed  Google Scholar 

  • Chen HF, Lee BP, Kou YR (1999) Two subgroups of lung vagal C-fibers with different vulnerabilities to blockades by perivagal capsaicin and vagal cooling in dogs. Chin J Physiol 42:219–225

    CAS  PubMed  Google Scholar 

  • Fox AJ, Barnes PJ, Urban L, Dray A (1993) An in vitro study of the properties of single vagal afferents innervating guinea-pig airways. J Physiol 469:21–35

    CAS  PubMed  Google Scholar 

  • Helliwell RJ, McLatchie LM, Clarke M, Winter J, Bevan S, McIntyre P (1998) Capsaicin sensitivity is associated with the expression of the vanilloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia. Neurosci Lett 250:177–180

    CAS  PubMed  Google Scholar 

  • Ho CY, Gu Q, Lin YS, Lee LY (2001) Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 127:113–124

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (1998) Neural injury, repair, and adaptation in the GI tract. II. The elusive action of capsaicin on the vagus nerve. Am J Physiol 275:G8–G13

    CAS  PubMed  Google Scholar 

  • Kaczynska K, Szereda-Przestaszewska M (2000) Respiratory effects of capsaicin occur beyond the lung vagi in anaesthetized rats. Acta Neurobiol Exp (Warsz) 60:159–165

    Google Scholar 

  • Kressel M (1998) Tyramide amplification allows anterograde tracing by horseradish peroxidase-conjugated lectins in conjunction with simultaneous immunohistochemistry. J Histochem Cytochem 46:527–534

    CAS  PubMed  Google Scholar 

  • Kulkarni-Narla A, Brown DR (2001) Opioid, cannabinoid and vanilloid receptor localization on porcine cultured myenteric neurons. Neurosci Lett 308:153–156

    Article  CAS  PubMed  Google Scholar 

  • Lemann M, Dederding JP, Flourie B, Franchisseur C, Rambaud JC, Jian R (1991) Abnormal perception of visceral pain in response to gastric distension in chronic idiopathic dyspepsia. The irritable stomach syndrome. Dig Dis Sci 36:1249–1254

    CAS  PubMed  Google Scholar 

  • Li Y, Owyang C (1996) Pancreatic secretion evoked by cholecystokinin and non-cholecystokinin- dependent duodenal stimuli via vagal afferent fibres in the rat. J Physiol 494:773–782

    CAS  PubMed  Google Scholar 

  • Liu YX, Owyang C (1999) Duodenal acid-induced gastric relaxation is mediated by multiple pathways. Am J Physiol 276:G1501–G1506

    CAS  PubMed  Google Scholar 

  • Marsh SJ, Stansfeld CE, Brown DA, Davey R, McCarthy D (1987) The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro. Neuroscience 23:275–289

    CAS  PubMed  Google Scholar 

  • Mezey E, Toth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, Guo A, Blumberg PM, Szallasi A (2000) Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1- like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci U S A 97:3655–3660

    Article  CAS  PubMed  Google Scholar 

  • Michael GJ, Priestley JV (1999) Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J Neurosci 19:1844–1854

    CAS  PubMed  Google Scholar 

  • Michl T, Jocic M, Heinemann A, Schuligoi R, Holzer P (2001) Vagal afferent signaling of a gastric mucosal acid insult to medullary, pontine, thalamic, hypothalamic and limbic, but not cortical, nuclei of the rat brain. Pain 92:19–27

    Article  CAS  PubMed  Google Scholar 

  • Nozawa Y, Nishihara K, Yamamoto A, Nakano M, Ajioka H, Matsuura N (2001) Distribution and characterization of vanilloid receptors in the rat stomach. Neurosci Lett 309:33–36

    Article  CAS  PubMed  Google Scholar 

  • Ozaki N, Gebhart GF (2001) Characterization of mechanosensitive splanchnic nerve afferent fibers innervating the rat stomach. Am J Physiol Gastrointest Liver Physiol 281:G1449–G1459

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, San Diego

  • Phillips RJ, Powley TL (2000) Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Brain Res Rev 34:1–26

    Article  CAS  PubMed  Google Scholar 

  • Powley TL, Berthoud HR (1991) A fluorescent labeling strategy for staining the enteric nervous system. J Neurosci Methods 36:9–15

    CAS  PubMed  Google Scholar 

  • Raybould HE, Tache Y (1989) Capsaicin-sensitive vagal afferent fibers and stimulation of gastric acid secretion in anesthetized rats. Eur J Pharmacol 167:237–243

    Article  CAS  PubMed  Google Scholar 

  • Raybould HE, Holzer HH (1993) Duodenal acid-induced inhibition of gastric motility and emptying in rats. Am J Physiol 265:G540–G546

    CAS  PubMed  Google Scholar 

  • Sekizawa S, Ishikawa T, Sant'Ambrogio FB, Sant'Ambrogio G (1999) Vagal esophageal receptors in anesthetized dogs: mechanical and chemical responsiveness. J Appl Physiol 86:1231–1235

    CAS  PubMed  Google Scholar 

  • Sharkey KA, Sobrino JA, Cervero F, Varro A, Dockray GJ (1989) Visceral and somatic afferent origin of calcitonin gene-related peptide immunoreactivity in the lower thoracic spinal cord of the rat. Neuroscience 32:169–179

    CAS  PubMed  Google Scholar 

  • Sharkey KA, Oland LD, Kirk DR, Davison JS (1991) Capsaicin-sensitive vagal stimulation-induced gastric acid secretion in the rat: evidence for cholinergic vagal afferents. Br J Pharmacol 103:1997–2003

    CAS  PubMed  Google Scholar 

  • South EH, Ritter RC (1988) Capsaicin application to central or peripheral vagal fibers attenuates CCK satiety. Peptides 9:601–612

    CAS  PubMed  Google Scholar 

  • Such G, Jancso G (1986) Axonal effects of capsaicin: an electrophysiological study. Acta Physiol Hung 67:53–63

    CAS  PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (1996) Vanilloid receptors: new insights enhance potential as a therapeutic target. Pain 68:195–208

    Article  CAS  Google Scholar 

  • Szallasi A, Nilsson S, Farkas-Szallasi T, Blumberg PM, Hökfelt T, Lundberg JM (1995) Vanilloid (capsaicin) receptors in the rat: distribution in the brain, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment. Brain Res 703:175–183

    Article  CAS  PubMed  Google Scholar 

  • Tohda C, Sasaki M, Konemura T, Sasamura T, Itoh M, Kuraishi Y (2001) Axonal transport of VR1 capsaicin receptor mRNA in primary afferents and its participation in inflammation-induced increase in capsaicin sensitivity. J Neurochem 76:1628–1635

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M, Julius D (2000) Capsaicin receptor in the pain pathway. Jpn J Pharmacol 83:20–24

    Article  CAS  PubMed  Google Scholar 

  • Traub RJ, Sengupta JN, Gebhart GF (1996) Differential c-fos expression in the nucleus of the solitary tract and spinal cord following noxious gastric distention in the rat. Neuroscience 74:873–884

    Article  CAS  PubMed  Google Scholar 

  • Waddell PJ, Lawson SN (1989) The C-fibre conduction block caused by capsaicin on rat vagus nerve in vitro. Pain 39:237–242

    CAS  PubMed  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Brookes SJ (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534:255–268

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Rudolf Berthoud.

Additional information

This research was partially funded by the National Institute for Diabetes and Digestive and Kidney Diseases, DK47348.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson, L.M., Zheng, H., Ward, S.M. et al. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract. Cell Tissue Res 311, 277–287 (2003). https://doi.org/10.1007/s00441-002-0682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-002-0682-0

Keywords

Navigation