Skip to main content
Log in

Slightly supercritical percolation on nonamenable graphs II: growth and isoperimetry of infinite clusters

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the growth and isoperimetry of infinite clusters in slightly supercritical Bernoulli bond percolation on transitive nonamenable graphs under the \(L^2\) boundedness condition (\(p_c<p_{2\rightarrow 2}\)). Surprisingly, we find that the volume growth of infinite clusters is always purely exponential (that is, the subexponential corrections to growth are bounded) in the regime \(p_c<p<p_{2\rightarrow 2}\), even when the ambient graph has unbounded corrections to exponential growth. For p slightly larger than \(p_c\), we establish the precise estimates

$$\begin{aligned} \textbf{E}_p \left[ \# B_\textrm{int}(v,r) \right]&\asymp \left( r \wedge \frac{1}{p-p_c} \right) e^{\gamma _\textrm{int}(p) r} \\ \textbf{E}_p \left[ \# B_\textrm{int}(v,r) \mid v \leftrightarrow \infty \right]&\asymp \left( r \wedge \frac{1}{p-p_c} \right) ^2 e^{\gamma _\textrm{int}(p) r} \end{aligned}$$

for every \(v\in V\), \(r \ge 0\), and \(p_c < p \le p_c+\delta \), where the growth rate \(\gamma _\textrm{int}(p) = \lim \frac{1}{r} \log \textbf{E}_p\#B(v,r)\) satisfies \(\gamma _\textrm{int}(p) \asymp p-p_c\). We also prove a percolation analogue of the Kesten–Stigum theorem that holds in the entire supercritical regime and states that the quenched and annealed exponential growth rates of an infinite cluster always coincide. We apply these results together with those of the first paper in this series to prove that the anchored Cheeger constant of every infinite cluster K satisfies

$$\begin{aligned} \frac{(p-p_c)^2}{\log [1/(p-p_c)]} \preceq \Phi ^*(K) \preceq (p-p_c)^2 \end{aligned}$$

almost surely for every \(p_c<p\le 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abert, M., Fraczyk, M., Hayes, B.: Co-spectral radius, equivalence relations and the growth of unimodular random rooted trees. arXiv preprint arXiv:2205.06692 (2022)

  2. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36(1–2), 107–143 (1984)

    Article  MathSciNet  Google Scholar 

  3. Antal, P., Pisztora, A.: On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24(2), 1036–1048 (1996)

    Article  MathSciNet  Google Scholar 

  4. Benjamini, I., Lyons, R., Schramm, O.: Percolation perturbations in potential theory and random walks. In: Random Walks and Discrete Potential Theory (Cortona, 1997), Sympososium Mathematics, XXXIX, pp. 56–84. Cambridge University Press, Cambridge (1999)

  5. Benjamini, I., Schramm, O.: Percolation beyond \(\textbf{Z} ^d\), many questions and a few answers. Electron. Comm. Probab. 1(8), 71–82 (1996)

    MathSciNet  Google Scholar 

  6. Cerf, R., Dembin, B.: The time constant for Bernoulli percolation is Lipschitz continuous strictly above \(p_c\). Ann. Probab. 50(5), 1781–1812 (2022)

    Article  MathSciNet  Google Scholar 

  7. Chatterjee, S., Hanson, J., Sosoe, P.: Subcritical connectivity and some exact tail exponents in high dimensional percolation. arXiv preprint arXiv:2107.14347 (2021)

  8. Chen, D., Peres, Y., Pete, G.: Anchored expansion, percolation and speed. Ann. Probab. 66, 2978–2995 (2004)

    MathSciNet  Google Scholar 

  9. Dembin, B.: Regularity of the time constant for a supercritical Bernoulli percolation. ESAIM Probab. Stat. 25, 109–132 (2021)

    Article  MathSciNet  Google Scholar 

  10. Garet, O., Marchand, R., Procaccia, E.B., Théret, M.: Continuity of the time and isoperimetric constants in supercritical percolation. Electron. J. Probab. 22(78), 35 (2017)

    MathSciNet  Google Scholar 

  11. Georgakopoulos, A., Panagiotis, C.: On the exponential growth rates of lattice animals and interfaces, and new bounds on \(p_c\). arXiv preprint arXiv:1908.03426 (2019)

  12. Grimmett, G.: Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd ed. Springer, Berlin (1999)

  13. Grimmett, G.R., Marstrand, J.M.: The supercritical phase of percolation is well behaved. Proc. R. Soc. Lond. Ser. A 430(1879), 439–457 (1990)

    Article  MathSciNet  Google Scholar 

  14. Häggström, O., Peres, Y., Schonmann, R.H.: Percolation on transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness. In: Perplexing Problems in Probability, volume 44 of Progress Probabilities, pp. 69–90. Birkhäuser, Boston (1999)

  15. Hara, T., Slade, G.: Mean-field behaviour and the lace expansion. In: Probability and Phase Transition, pp. 87–122. Springer (1994)

  16. Hermon, J., Hutchcroft, T.: Supercritical percolation on nonamenable graphs: isoperimetry, analyticity, and exponential decay of the cluster size distribution. Invent. Math. 224(2), 445–486 (2021)

    Article  MathSciNet  Google Scholar 

  17. Hernandez-Torres, S., Procaccia, E.B., Rosenthal, R.: The chemical distance in random interlacements in the low-intensity regime. arXiv preprint arXiv:2112.13390 (2021)

  18. Heydenreich, M., van der Hofstad, R.: Progress in High-Dimensional Percolation and Random Graphs. CRM Short Courses. Springer, Cham; Centre de Recherches Mathématiques, Montreal (2017)

  19. Hutchcroft, T.: Percolation on hyperbolic graphs. Geom. Funct. Anal. 29(3), 766–810 (2019)

    Article  MathSciNet  Google Scholar 

  20. Hutchcroft, T.: Self-avoiding walk on nonunimodular transitive graphs. Ann. Probab. 47(5), 2801–2829 (2019)

    Article  MathSciNet  Google Scholar 

  21. Hutchcroft, T.: The \(L^2\) boundedness condition in nonamenable percolation. Electron. J. Probab. 25(127), 27 (2020)

    MathSciNet  Google Scholar 

  22. Hutchcroft, T.: Nonuniqueness and mean-field criticality for percolation on nonunimodular transitive graphs. J. Am. Math. Soc. 33(4), 1101–1165 (2020)

    Article  MathSciNet  Google Scholar 

  23. Hutchcroft, T.: Slightly supercritical percolation on non-amenable graphs I: the distribution of finite clusters. Proc. Lond. Math. Soc. (3) 125(4), 968–1013 (2022)

    Article  MathSciNet  Google Scholar 

  24. Hutchcroft, T., Michta, E., Slade, G.: High-dimensional near-critical percolation and the torus plateau. Ann. Probab. 51(2), 580–625 (2023)

    Article  MathSciNet  Google Scholar 

  25. Kesten, H., Stigum, B.P.: A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Stat. 37, 1211–1223 (1966)

    Article  MathSciNet  Google Scholar 

  26. Kozma, G.: Percolation on a product of two trees. Ann. Probab. 66, 1864–1895 (2011)

    MathSciNet  Google Scholar 

  27. Kozma, G., Nachmias, A.: The Alexander–Orbach conjecture holds in high dimensions. Invent. Math. 178(3), 635–654 (2009)

    Article  MathSciNet  Google Scholar 

  28. Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of \(L\log L\) criteria for mean behavior of branching processes. Ann. Probab. 23(3), 1125–1138 (1995)

    Article  MathSciNet  Google Scholar 

  29. Lyons, R., Schramm, O.: Indistinguishability of percolation clusters. Ann. Probab. 27(4), 1809–1836 (1999)

    Article  MathSciNet  Google Scholar 

  30. Nachmias, A., Peres, Y.: Non-amenable Cayley graphs of high girth have \(p_c<p_u\) and mean-field exponents. Electron. Commun. Probab. 17(57), 8 (2012)

    Google Scholar 

  31. Pak, I., Smirnova-Nagnibeda, T.: On non-uniqueness of percolation on nonamenable Cayley graphs. C. R. Acad. Sci. Paris Sér. I Math. 330(6), 495–500 (2000)

    Article  MathSciNet  Google Scholar 

  32. Sapozhnikov, A.: Upper bound on the expected size of the intrinsic ball. Electron. Commun. Probab. 15, 297–298 (2010)

    Article  MathSciNet  Google Scholar 

  33. Schonmann, R.H.: Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs. Comm. Math. Phys. 219(2), 271–322 (2001)

    Article  MathSciNet  Google Scholar 

  34. Timár, Á.: A stationary random graph of no growth rate. Annales de l’IHP Probabilités et statistiques 50, 1161–1164 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was carried out in part while the author was a Senior Research Associate at the University of Cambridge, during which time he was supported by ERC starting Grant 804166 (SPRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Hutchcroft.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutchcroft, T. Slightly supercritical percolation on nonamenable graphs II: growth and isoperimetry of infinite clusters. Probab. Theory Relat. Fields 188, 549–582 (2024). https://doi.org/10.1007/s00440-023-01240-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-023-01240-6

Mathematics Subject Classification

Navigation