Skip to main content
Log in

Random-field random surfaces

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study how the typical gradient and typical height of a random surface are modified by the addition of quenched disorder in the form of a random independent external field. The results provide quantitative estimates, sharp up to multiplicative constants, in the following cases. It is shown that for real-valued random-field random surfaces of the \(\nabla \phi \) type with a uniformly convex interaction potential: (i) The gradient of the surface delocalizes in dimensions \(1\le d\le 2\) and localizes in dimensions \(d\ge 3\). (ii) The surface delocalizes in dimensions \(1\le d\le 4\) and localizes in dimensions \(d\ge 5\). It is further shown that for the integer-valued random-field Gaussian free field: (i) The gradient of the surface delocalizes in dimensions \(d=1,2\) and localizes in dimensions \(d\ge 3\). (ii) The surface delocalizes in dimensions \(d=1,2\). (iii) The surface localizes in dimensions \(d\ge 3\) at low temperature and weak disorder strength. The behavior in dimensions \(d\ge 3\) at high temperature or strong disorder is left open. The proofs rely on several tools: Explicit identities satisfied by the expectation of the random surface, the Efron–Stein concentration inequality, a coupling argument for Langevin dynamics (originally due to Funaki and Spohn (Comm Math Phys 185(1): 1-36, 1997) and the Nash–Aronson estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, S., Kister, A., Weber, H.: Sample path large deviations for laplacian models in \((1+ 1) \)-dimensions. Electron. J. Probab. 21, 1–36 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Harel, M., Peled, R.: Exponential decay of correlations in the \(2D\) random field Ising model. J. Stat. Phys. 180(1–6), 304–331 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Aizenman, M., Peled, R.: A power-law upper bound on the correlations in the \(2D\) random field Ising model. Comm. Math. Phys. 372(3), 865–892 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Aizenman, M., Wehr, J.: Rounding of first-order phase transitions in systems with quenched disorder. Phys. Rev. Lett. 62(21), 2503 (1989)

    MathSciNet  Google Scholar 

  5. Aizenman, M., Wehr, J.: Rounding effects of quenched randomness on first-order phase transitions. Comm. Math. Phys. 130(3), 489–528 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)

    MathSciNet  MATH  Google Scholar 

  7. Balister, P.N., Bollobás, B.: Counting regions with bounded surface area. Comm. Math. Phys. 273(2), 305–315 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Bollobás, B., Leader, I.: Edge-isoperimetric inequalities in the grid. Combinatorica 11(4), 299–314 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Bolthausen, E., Cipriani, A., Kurt, N.: Exponential decay of covariances for the supercritical membrane model. Comm. Math. Phys. 353(3), 1217–1240 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities A nonasymptotic theory of independence. Oxford University Press (2013)

  11. Bovier, A., Külske, C.: Stability of hierarchical interfaces in a random field model. J. Stat. Phys. 69(1), 79–110 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Bovier, A., Külske, C.: Hierarchical interfaces in random media II: the Gibbs measures. J. Stat. Phys. 73(1), 253–266 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Bovier, A., Külske, C.: A rigorous renormalization group method for interfaces in random media. Rev. Math. Phys. 6(3), 413–496 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Bovier, A., Külske, C.: There are no nice interfaces in (2+1)-dimensional SOS models in random media. J. Stat. Phys. 83(3–4), 751–759 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Bovier, A., Picco, P.: Stability of interfaces in a random environment. A rigorous renormalization group analysis of a hierarchical model. J. Stat. Phys. 62(1), 177–199 (1991)

  16. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    MATH  Google Scholar 

  17. Brascamp, H.J., Lieb, E.H.: Some inequalities for gaussian measures and the long-range order of the one-dimensional plasma. In Inequalities, pages 403–416. Springer, (2002)

  18. Brascamp, H.J., Lieb, E.H., Lebowitz, J.L.: The statistical mechanics of anharmonic lattices. Inst. Internat. Statist., 46(1):393–404 (1976), (1975)

  19. Bricmont, J., Kupiainen, A.: Phase transition in the \(3d\) random field Ising model. Comm. Math. Phys. 116(4), 539–572 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Caravenna, F., Deuschel, J.-D.: Pinning and wetting transition for (1+ 1)-dimensional fields with laplacian interaction. Ann. Prob. 36(6), 2388–2433 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Cardy, J.L., Ostlund, S.: Random symmetry-breaking fields and the XY model. Phys. Rev. B 25(11), 6899 (1982)

    Google Scholar 

  22. Chalker, J.: On the lower critical dimensionality of the Ising model in a random field. J. Phys. C: Solid State Phys. 16(34), 6615 (1983)

    Google Scholar 

  23. Chatterjee, S.: On the decay of correlations in the random field Ising model. Comm. Math. Phys. 362(1), 253–267 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Cipriani, A., Dan, B., Hazra, R.S.: The scaling limit of the membrane model. Ann. Probab. 47(6), 3963–4001 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Cotar, C., Külske, C.: Existence of random gradient states. Ann. Appl. Probab. 22(4), 1650–1692 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Cotar, C., Külske, C.: Uniqueness of gradient Gibbs measures with disorder. Probab. Theory Relat. Fields 162(3–4), 587–635 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Dario, P.: Convergence of the thermodynamic limit for random-field random surfaces. arXiv preprint arXiv:2105.03940, (2021)

  28. Dario, P., Harel, M., Peled, R.: Quantitative disorder effects in low dimensional spin systems. arXiv preprint arXiv:2101.01711, (2021)

  29. Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 15(1), 181–232 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Delmotte, T.: Parabolic harnack inequality and estimates of markov chains on graphs. Revista matemática iberoamericana 15(1), 181–232 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Deuschel, J.-D., Giacomin, G., Ioffe, D.: Large deviations and concentration properties for \(\nabla \phi \) interface models. Probab. Theory Relat. Fields 117(1), 49–111 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Ding, J., Wirth, M.: Correlation length of two-dimensional random field Ising model via greedy lattice animal. arXiv preprint arXiv:2011.08768, (2020)

  33. Ding, J., Xia, J.: Exponential decay of correlations in the two-dimensional random field Ising model. Invent. Math., pp. 1–47, (2021)

  34. Durrett, R.: Probability—theory and examples, volume 49 of Cambridge Series in Statistical and Probabilistic Mathematics. 5th edition, Cambridge University Press, Cambridge, (2019)

  35. Evans, L.C.: Partial differential equations, vol 19. American Mathematical Soc., (2010)

  36. Fisher, D.S., Fröhlich, J., Spencer, T.: The Ising model in a random magnetic field. J. Statist. Phys. 34(5–6), 863–870 (1984)

    MathSciNet  Google Scholar 

  37. Forgacs, G., Lipowsky, R., Nieuwenhuizen, T.M.: The behavior of interfaces in ordered and disordered systems. Phase Trans. Crit. Phenom. 14, 135–363 (1991)

    Google Scholar 

  38. Fröhlich, J., Spencer, T.: Kosterlitz-Thouless transition in the two-dimensional plane rotator and Coulomb gas. Phys. Rev. Lett. 46(15), 1006–1009 (1981)

    MathSciNet  Google Scholar 

  39. Fröhlich, J., Spencer, T.: The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Comm. Math. Phys. 81(4), 527–602 (1981)

    MathSciNet  Google Scholar 

  40. Funaki, T.: Stochastic interface models. In Lectures on Probability Theory and Statistics, volume 1869 of Lecture Notes in Math., pages 103–274. Springer, Berlin, (2005)

  41. Funaki, T., Spohn, H.: Motion by mean curvature from the Ginzburg-Landau \(\nabla \phi \) interface model. Comm. Math. Phys. 185(1), 1–36 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Garban, C., Sepúlveda, A.: Statistical reconstruction of the Gaussian free field and KT transition. arXiv preprint arXiv:2002.12284, (2020)

  43. Giacomin, G., Olla, S., Spohn, H.: Equilibrium fluctuations for \(\nabla \phi \) interface model. Ann. Probab. 29(3), 1138–1172 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Giamarchi, T., Le Doussal, P.: Elastic theory of flux lattices in the presence of weak disorder. Phys. Rev. B 52(2), 1242 (1995)

    Google Scholar 

  45. Hwa, T., Fisher, D.S.: Vortex glass phase and universal susceptibility variations in planar arrays of flux lines. Phys. Rev. Lett. 72(15), 2466 (1994)

    Google Scholar 

  46. Imry, Y., Ma, S.-K.: Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35(21), 1399 (1975)

    Google Scholar 

  47. Kharash, V., Peled, R.: The Fröhlich-Spencer proof of the Berezinskii-Kosterlitz-Thouless transition. arXiv preprint arXiv:1711.04720, (2017)

  48. Külske, C., Orlandi, E.: A simple fluctuation lower bound for a disordered massless random continuous spin model in \(d=2\). Electron. Comm. Probab. 11, 200–205 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Külske, C., Orlandi, E.: Continuous interfaces with disorder: even strong pinning is too weak in two dimensions. Stoch. Process. Appl. 118(11), 1973–1981 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Kurt, N.: Entropic repulsion for a class of Gaussian interface models in high dimensions. Stoch. Process. Appl., 117(1), (2007)

  51. Kurt, N.: Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension. Ann. Prob. 37(2), 687–725 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Lammers, P.: Height function delocalisation on cubic planar graphs. arXiv preprint arXiv:2012.09687, (2020)

  53. Le Doussal, P., Schehr, G.: Disordered free fermions and the Cardy-Ostlund fixed line at low temperature. Phys. Rev. B 75(18), 184401 (2007)

    Google Scholar 

  54. Lebowitz, J.L., Mazel, A.E.: Improved Peierls argument for high-dimensional Ising models. J. Statist. Phys. 90(3–4), 1051–1059 (1998)

    MathSciNet  MATH  Google Scholar 

  55. Magazinov, A., Peled, R.: Concentration inequalities for log-concave distributions with applications to random surface fluctuations. arXiv preprint arXiv:2006.05393, (2020)

  56. Miłoś, P., Peled, R.: Delocalization of two-dimensional random surfaces with hard-core constraints. Comm. Math. Phys. 340(1), 1–46 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80(4), 931–954 (1958)

    MathSciNet  MATH  Google Scholar 

  58. Nattermann, T.: Scaling approach to pinning: charge density waves and giant flux creep in superconductors. Phys. Rev. Lett. 64(20), 2454 (1990)

    Google Scholar 

  59. Orland, H., Shapir, Y.: A disorder-dependent variational method without replicas: application to the random phase sine-Gordon model. EPL (Europhys. Lett.) 30(4), 203 (1995)

  60. Ristivojevic, Z., Le Doussal, P., Wiese, K.J.: Super-rough phase of the random-phase sine-gordon model: two-loop results. Phys. Rev. B 86(5), 054201 (2012)

    Google Scholar 

  61. Ruelle, D.: Statistical mechanics: Rigorous results. World Scientific, (1999)

  62. Sakagawa, H.: Entropic repulsion for a Gaussian lattice field with certain finite range interaction. J. Math. Phys. 44(7), 2939–2951 (2003)

    MathSciNet  MATH  Google Scholar 

  63. Schweiger, F.: On the membrane model and the discrete Bilaplacian. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2021)

  64. Sheffield, S.: Random surfaces. Astérisque, (304):vi+175, (2005)

  65. Timár, Á.: Boundary-connectivity via graph theory. Proc. Am. Math. Soc. 141(2), 475–480 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Toner, J., DiVincenzo, D.: Super-roughening: A new phase transition on the surfaces of crystals with quenched bulk disorder. Phys. Rev. B 41(1), 632 (1990)

    Google Scholar 

  67. van Enter, A.C., Külske, C.: Nonexistence of random gradient Gibbs measures in continuous interface models in \(d=2\). Ann. Appl. Probab. 18(1), 109–119 (2008)

    MathSciNet  MATH  Google Scholar 

  68. Velenik, Y.: Localization and delocalization of random interfaces. Probab. Surv. 3, 112–169 (2006)

    MathSciNet  MATH  Google Scholar 

  69. Villain, J., Fernandez, J.F.: Harmonic system in a random field. Zeitschrift für Physik B Condens. Matter 54(2), 139–150 (1984)

    Google Scholar 

Download references

Acknowledgements

We are indebted to David Huse for a discussion on the possible behavior of the integer-valued random-field Gaussian free field in dimensions \(d\ge 3\), and to Michael Aizenman, Charles M. Newman, Thomas Spencer and Daniel L. Stein for encouragement and helpful conversations on the topics of this work. We are grateful to Florian Schweiger for clarifying to us the different choices of boundary conditions in the membrane model and for pointing out a mistake in a previous draft of Sect. 7. We thank two anonymous referees for useful and constructive comments which helped us improve the manuscript. We are also grateful to Antonio Auffinger, Wei-Kuo Chen, Izabella Stuhl and Yuri Suhov for the opportunity to present these results in online talks and for useful discussions. The research of the authors was supported in part by Israel Science Foundation grants 861/15 and 1971/19 and by the European Research Council starting grant 678520 (LocalOrder).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Peled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Nash–Aronson estimates for the Dirichlet problem

Appendix A. Nash–Aronson estimates for the Dirichlet problem

In this section, we prove the Nash–Aronson estimate in finite volume stated in Proposition 3.3. The proof builds upon the infinite-volume result of [43, Appendix B] stated below (which itself builds upon the infinite-volume and continuous estimate of Aronson [6]). We first introduce the infinite-volume heat kernel and state the Nash–Aronson estimate for discrete, time-dependent and uniformly elliptic environment of Giacomin–Olla–Spohn [43].

Definition A.1

Let \(s_0 \in \mathbb {R}\). For each continuous, time-dependent, uniformly elliptic environment \({\textbf{a}}: [s_0 , \infty ) \times E(\mathbb {Z}^d) \rightarrow [c_- , c_+]\), each initial time \(s \in [s_0 , \infty )\), and each point \(y \in \Lambda _L\), we introduce the infinite-volume heat kernel \(P_{{\textbf{a}}, \infty }\) to be the solution of the parabolic equation

$$\begin{aligned} \left\{ \begin{aligned} \partial _t P_{{\textbf{a}}, \infty } (t , x ; s ,y) - \nabla \cdot {\textbf{a}}\nabla P_{{\textbf{a}}, \infty } (t , x ; s ,y)&= 0{} & {} (t , x) \in (s , \infty ) \times \mathbb {Z}^d, \\ P_{{\textbf{a}}, \infty }(s , x ; s ,y)&= \mathbbm {1}_{\{ x = y \}}{} & {} x \in \mathbb {Z}^d. \end{aligned} \right. \end{aligned}$$

The next proposition establishes lower and upper bounds on the map \(P_{{\textbf{a}}, \infty }.\)

Proposition A.2

(Nash–Aronson estimates, Propositions B.3 and B.4 of [43]). There exist constants Cc depending on the dimension d and the ellipticity parameters \(c_-, c_+\) such that, for any pair of times \(s , t \in (s_0 , \infty )\) with \(t \ge s\) and any pair of points \(x , y \in \mathbb {Z}^d\),

$$\begin{aligned} P_{{\textbf{a}}, \infty } \left( t , x ; s ,y \right) \le \frac{C}{1 \vee (t-s)^{\frac{d}{2}}} \exp \left( - \frac{c|x - y|}{ 1 \vee \sqrt{t- s}} \right) . \end{aligned}$$
(A.1)

Under the additional assumption \(|x - y| \le \sqrt{t - s} \), one has the lower bound

$$\begin{aligned} P_{{\textbf{a}}, \infty } \left( t , x ; s ,y \right) \ge \frac{c}{1 \vee (t-s)^{\frac{d}{2}}}. \end{aligned}$$
(A.2)

Remark A.3

The article of Giacomin–Olla–Spohn [43] only establishes the lower bound of the Nash–Aronson estimate in the on-diagonal case (i.e., under the assumption \(|x - y| \le \sqrt{t - s}\)). While it would be possible to obtain off-diagonal lower bounds (in the case \(|x - y| \ge \sqrt{t - s}\)) by adapting the techniques of [6, 30] (written in either the continuous setting or the discrete setting with a static environment), they are not necessary in the article [43] or in the proof of Theorem 2.

Remark A.4

Under the assumption \(|x - y| \le \sqrt{t - s}\), the ratio \(|x - y| / (1 \vee \sqrt{t- s})\) is smaller than 1 and the right-hand sides of (A.1) and (A.2) are of comparable sizes. The estimates are thus sharp up to multiplicative constants.

The proof of Proposition A.2 given below relies on analytic arguments. We mention that a more probabilistic approach, relying on the introduction of the random-walk whose generator is the operator \(- \nabla \cdot {\textbf{a}}\nabla \) (following [43, Section 3.2]) and on stopping time arguments, would yield the same result.

Proof of Proposition 3.3

First let us note that by the change of variable \((t - s) \rightarrow (t-s)/c_-\), it is sufficient to prove the result when \(c_- = 1\). Let us fix an integer \(L\ge 0\), let \( c_+ \in [1 , \infty )\) be an ellipticity constant, and let \(s_0\in \mathbb {R}\). Let \({\textbf{a}}: [s_0 , \infty ) \times E(\Lambda _L^+) \rightarrow [1 , c_+]\) be a continuous time-dependent (uniformly elliptic) environment. For any \(s \in [s_0 , \infty )\) and any vertex \(y \in \Lambda _L\), we denote by \(P_{\textbf{a}}(\cdot , \cdot ; s, x)\) the solution of the parabolic Eq. (3.3). We extend the environment \({\textbf{a}}\) to the space \([s_0 , \infty ) \times E(\mathbb {Z}^d)\) by setting \({\textbf{a}}(t , e) = c_+\) for any pair \((t , e) \in [s_0 , \infty ) \times \left( E(\mathbb {Z}^d) \setminus E\left( \Lambda _L^+ \right) \right) \), and let \(P_{{\textbf{a}}, \infty }\) be the infinite volume heat kernel associated with the extended environment \({\textbf{a}}\) as defined in Definition A.1. We prove the upper and lower bounds of Proposition 3.3 separately. We will make use of the notation

$$\begin{aligned} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^2_{L^2 \left( \Lambda _L \right) }:= & {} \sum _{x \in \Lambda _L} P_{\textbf{a}}\left( t , x ; s , y \right) ^2 \text{ and } \\ \left\| P_{\textbf{a}}\left( t , x ; s , \cdot \right) \right\| ^2_{L^2 \left( \Lambda _L \right) }:= & {} \sum _{y \in \Lambda _L} P_{\textbf{a}}\left( t , x ; s , y \right) ^2 \end{aligned}$$

as well as, for any directed edge \(e = (x , z) \in \textbf{E} \left( \Lambda _L^+ \right) \),

$$\begin{aligned} \nabla P_{\textbf{a}}\left( t , e ; s , y \right) = P_{\textbf{a}}\left( t , x ; s , y \right) - P_{\textbf{a}}\left( t , z ; s , y \right) \end{aligned}$$

and, following the conventions of Section 2.2,

$$\begin{aligned} \left\| \nabla P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^2_{L^2 \left( \Lambda _L^+ \right) } = \sum _{e \in E \left( \Lambda _L^+ \right) } \left( \nabla P_{\textbf{a}}\left( t , e ; s , y \right) \right) ^2. \end{aligned}$$

Proof of the upper bound. We first note that the estimate (3.5) is equivalent to the two following inequalities: There exist constants cC depending on \(d , c_+ \) such that

$$\begin{aligned} \left\{ \begin{aligned} P_{{\textbf{a}}}\left( t , x ; s , y \right)&\le \frac{C}{1 \vee (t-s)^{\frac{d}{2}}} \exp \left( - \frac{c|x - y|}{ 1 \vee \sqrt{t- s}} \right)&~\text{ if }~ (t - s) \le L^2, \\ P_{{\textbf{a}}}\left( t , x ; s , y \right)&\le \frac{C}{1 \vee (t - s)^\frac{d}{2}} \exp \left( - \frac{c(t - s)}{L^2} \right)&~\text{ if }~ (t - s) \ge L^2. \end{aligned} \right. \nonumber \\ \end{aligned}$$
(A.3)

We first treat the case \((t - s) \le L^2\). By the maximum principle for the parabolic operator \(\partial _t - \nabla \cdot {\textbf{a}}\nabla \), one has the estimate, for any \(t, s \in [ s_0 , \infty )\) with \(t \ge s\) and any \(x , y \in \Lambda _L\),

$$\begin{aligned} P_{\textbf{a}}\left( t , x ; s , y \right) \le P_{{\textbf{a}}, \infty } \left( t , x ; s , y \right) . \end{aligned}$$
(A.4)

Combining the inequality (A.4) with Proposition A.2 yields the upper bound, for any \(s , t \in (s_0 , \infty )\) with \(t \ge s\) and any \(x , y \in \mathbb {Z}^d\),

$$\begin{aligned} P_{\textbf{a}}\left( t , x ; s , y \right) \le \frac{C}{1 \vee (t-s)^{\frac{d}{2}}} \exp \left( - \frac{c|x - y|}{ 1 \vee \sqrt{t- s}} \right) . \end{aligned}$$
(A.5)

This is (A.3) in the case \(t \le L^2\). We now focus on the case \(t \ge L^2\). To this end, we denote by \(C_{\textrm{Poinc}}\) the constant which appears in the Poincaré inequality, that is, the smallest constant which satisfies \(\left\| u \right\| _{L^2 \left( \Lambda _\ell \right) }^2 \le C_\textrm{Poinc} \ell ^2 \left\| \nabla u \right\| _{L^2 \left( \Lambda _\ell ^+\right) }^2\) for any side length \(\ell \in \mathbb {N}\) and any function \(u : \Lambda _\ell ^+ \rightarrow \mathbb {R}\) normalized to be 0 on the boundary \(\partial \Lambda _\ell \). We then let \(c_1 := 1/C_\textrm{Poinc}\), and note that this constant depends only on the parameter d.

Using that the heat kernel \(P_{\textbf{a}}\) solves the parabolic Eq. (3.3) and the discrete integration by parts (2.6), we have

$$\begin{aligned} \partial _t \left( e^{\frac{c_1(t-s)}{L^2}} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^2_{L^2 \left( \Lambda _L \right) } \right)&= \frac{c_1 e^{\frac{c_1(t-s)}{L^2}}}{L^2} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^2_{L^2 \left( \Lambda _L \right) } \nonumber \\&\quad - 2 e^{\frac{c_1(t-s)}{ L^2}}\sum _{e \in E \left( \Lambda _L^+ \right) } {\textbf{a}}(t , e) \left( \nabla P_{\textbf{a}}\left( t , e ; s , y \right) \right) ^2. \end{aligned}$$
(A.6)

Using the lower bound \({\textbf{a}}\ge 1\) on the environment, and the Poincaré inequality in the box \(\Lambda _L\) (which can be applied since the mapping \(x \mapsto P_{\textbf{a}}(t , x ; s , y )\) is equal to 0 on \(\partial \Lambda _L\)), we obtain

$$\begin{aligned} \sum _{e \in E \left( \Lambda _L^+ \right) } {\textbf{a}}(t , e) \left( \nabla P_{\textbf{a}}\left( t , e ; s , y \right) \right) ^2 \ge \frac{1}{C_{\textrm{Poinc}} L^2} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| _{L^2 \left( \Lambda _L \right) }^2. \end{aligned}$$

A combination of (A.6) and (A.7) with the definition of the constant \(c_1\) above yields

$$\begin{aligned} \partial _t \left( e^{ \frac{c_1 (t-s)}{L^2}} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^2_{L^2 \left( \Lambda _L \right) } \right) \le - c_- e^{\frac{c_1 (t-s)}{L^2}} \left\| \nabla P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^2_{L^2 \left( \Lambda _L^+ \right) }.\qquad \end{aligned}$$
(A.7)

By the Nash inequality (see [57]) and the non-negativity of the map \(P_{\textbf{a}}\), there exists a constant \(C_{\textrm{Nash}}\) depending only on the dimension d such that

$$\begin{aligned} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| _{L^2 \left( \Lambda _L \right) }^{1 + \frac{2}{d}} \le C_{\textrm{Nash}} \left( \sum _{x \in \Lambda _L} P_{\textbf{a}}\left( t , x ; s , y \right) \right) ^\frac{2}{d} \left\| \nabla P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| _{L^2 \left( \Lambda _L^+ \right) }.\nonumber \\ \end{aligned}$$
(A.8)

Applying the inequality (3.4) obtained in Section 3.3, we may simplify the inequality (A.8) and write

$$\begin{aligned} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| _{L^2 \left( \Lambda _L \right) }^{1 + \frac{2}{d}} \le C_{\textrm{Nash}} \left\| \nabla P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| _{L^2 \left( \Lambda _L^+ \right) }. \end{aligned}$$
(A.9)

Combining (A.7) and (A.9) yields

$$\begin{aligned} \partial _t \left( e^{\frac{c_1(t-s)}{L^2}} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^2_{L^2 \left( \Lambda _L \right) } \right)&\le - \frac{1}{C_{\textrm{Nash}}} e^{\frac{c_1(t-s)}{L^2}} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^{\frac{2d}{d+2}}_{L^2 \left( \Lambda _L \right) } \nonumber \\&\le - \frac{1}{C_{\textrm{Nash}}} \left( e^{\frac{c_1(t-s)}{L^2}} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^{2}_{L^2 \left( \Lambda _L \right) } \right) ^{\frac{d}{d+2}}. \nonumber \\ \end{aligned}$$
(A.10)

Integrating the differential inequality (A.10) and using the identity \(\left\| P_{\textbf{a}}\left( s , \cdot ; s , y \right) \right\| ^2_{L^2 \left( \Lambda _L \right) } = 1\), we obtain that there exists a constant C depending on d and \(c_-\) such that, for any \(t \ge s\),

$$\begin{aligned} e^{\frac{c_1(t-s)}{L^2}} \left\| P_{\textbf{a}}\left( t , \cdot ; s , y \right) \right\| ^2_{L^2 \left( \Lambda _L \right) } \le \frac{C}{1 \vee (t - s)^\frac{d}{2}}. \end{aligned}$$
(A.11)

We now show that the estimate (A.11) implies the inequality (A.3) in the case \((t -s) \ge L^2\). Using the convolution property for the heat kernel \(P_{\textbf{a}}\), we have the identity, for any \(t, s\in [s + L^2 , \infty )\) and any \(x, y \in \Lambda _L\),

$$\begin{aligned} P_{\textbf{a}}(t , x ; s , y) = \sum _{z \in \Lambda _L} P_{\textbf{a}}\left( t , x ; \frac{t + s}{2} , z\right) P_{\textbf{a}}\left( \frac{t + s}{2} , z ; s , y \right) . \end{aligned}$$

The Cauchy-Schwarz inequality then yields

$$\begin{aligned} P_{\textbf{a}}(t , x ; s , y) \le \left\| P_{\textbf{a}}\left( t , \cdot ; \frac{t + s}{2} , y \right) \right\| _{L^2 \left( \Lambda _L \right) } \left\| P_{\textbf{a}}\left( \frac{t + s}{2} , x ; s , \cdot \right) \right\| _{L^2 \left( \Lambda _L \right) }.\nonumber \\ \end{aligned}$$
(A.12)

The first term of the right-hand side of (A.12) can be estimated by the upper bound (A.11) applied with the initial time \(\frac{s + t}{2}\) instead of s. We obtain

$$\begin{aligned} \left\| P_{\textbf{a}}\left( t , \cdot ; \frac{s + t}{2} , y \right) \right\| ^2_{L^2 \left( \Lambda _L \right) } \le \frac{C e^{-\frac{c_1(t-s)}{2 L^2}} }{1 \vee (t - s)^\frac{d}{2}}. \end{aligned}$$
(A.13)

To estimate the second term in the right-hand side, we use the estimate (A.5), the assumption \(t - s \ge L^2\), the observations that, for any pair of points \(x , z \in \Lambda _L\), \(|x - z| \le C L\), and that the cardinality of the box \(\Lambda _L\) is equal to \((2L+1)^d\). We obtain

$$\begin{aligned} \left\| P_{\textbf{a}}\left( \frac{t + s}{2} , x ; s , \cdot \right) \right\| _{L^2 \left( \Lambda _L \right) }^2&\le \sum _{z \in \Lambda _L} \left( \frac{C}{1 \vee (t-s)^{\frac{d}{2}}} \exp \left( - \frac{c|x - y|}{ 1 \vee \sqrt{t- s}} \right) \right) ^2 \nonumber \\&\le \sum _{z \in \Lambda _L} \frac{C}{1 \vee (t-s)^{d}} \nonumber \\&\le \frac{CL^d}{1 \vee (t-s)^{d}} \nonumber \\&\le \frac{C}{1 \vee (t-s)^{\frac{d}{2}}}. \end{aligned}$$
(A.14)

A combination of (A.12), (A.13) and (A.14) completes the proof of (A.3) in the case \(t \ge L^2\).

Proof of the lower bound. We first claim that there exists a constant \(c_0 \in (0 , 1)\) depending on the parameters \(d , c_+\) such that, for any \(t , s \in [ s_0 , \infty )\) satisfying \(\sqrt{t - s} \le c_0 L\) and any \(y \in \Lambda _{L/2}\),

$$\begin{aligned} \sup _{(t' , x) \in [s , t] \times \partial \Lambda _{L}} P_{{\textbf{a}}, \infty } \left( t' , x ; s , y \right) \le \frac{1}{2} \inf _{x \in y + \Lambda _{\sqrt{t-s}}} P_{{\textbf{a}}, \infty } \left( t , x ; s , y \right) . \end{aligned}$$
(A.15)

The proof of this inequality relies on Proposition A.2. First by the lower bound (A.2), we have the estimate, for any \(t, s \in [s_0 , \infty )\) such that \(t - s \le L^2\),

$$\begin{aligned} \inf _{x \in y + \Lambda _{\sqrt{t-s}}} P_{{\textbf{a}}, \infty } \left( t , x ; s , y \right) \ge \frac{c}{1 \vee (t - s)^\frac{d}{2}} \ge \frac{c}{L^d}. \end{aligned}$$
(A.16)

Let us fix a constant \(c_1 \in (0 , 1)\). Using that for any point \(x \in \partial \Lambda _L\) and any point \(y \in \Lambda _{L/2}\), we have \(|x - y| \ge L/2\) together with the upper bound (A.1), we obtain the estimate, for any \(L \ge c_1^{-1}\) and any \(t, s \in [s_0 , \infty )\) satisfying \(\sqrt{t - s} \le c_1 L\),

$$\begin{aligned} \sup _{(t' , x) \in [s , t] \times \partial \Lambda _{L}} P_{{\textbf{a}}, \infty } \left( t' , x ; s , y \right)&\le \sup _{(t' , x) \in [s , t] \times \partial \Lambda _L} \frac{C}{1 \vee (t'-s)^{\frac{d}{2}}} \exp \left( - \frac{c|x - y|}{ 1 \vee \sqrt{t'- s}} \right) \nonumber \\&\le \sup _{t' \in [s , t]} \frac{C}{1 \vee (t'-s)^{\frac{d}{2}}} \exp \left( - \frac{cL}{2 \left( 1 \vee \sqrt{t'- s} \right) } \right) \nonumber \\&\le \sup _{t' \in [0, c_1^2 L^2]} \frac{C}{ t'^{d/2}} \exp \left( - \frac{cL}{2\sqrt{t'}} \right) \nonumber \\&\le \sup _{t' \in [0, c_1^2]} \frac{C}{L^d t'^{d/2}} \exp \left( - \frac{c}{2\sqrt{t'}} \right) . \end{aligned}$$
(A.17)

Using that the mapping \(t' \mapsto t'^{-d/2} \exp \left( - c/ (2 \sqrt{t'}) \right) \) tends to 0 as \(t'\) tends to 0, we may select a constant \(c_0 \in (0 , 1]\) such that

$$\begin{aligned} \sup _{t' \in [0, c_0^2]} \frac{C}{ t'^{d/2}} \exp \left( - \frac{c}{2 \sqrt{t'}} \right) \le \frac{c}{2}, \end{aligned}$$
(A.18)

where the constants cC are the ones which appear in the right-hand sides of (A.16) and (A.17). Let us note that, since the constants cC depend only on the dimension d and the ellipticity constant \(c_+\), the constant \(c_0\) may be chosen so that it depends only on \(d , c_+\). Multiplying both sides of the inequality (A.18) by \(L^{-d}\) yields, for any \(t, s \in [s_0 , \infty )\) such that \(\sqrt{t - s} \le c_0 L\),

$$\begin{aligned} \sup _{(t' , x) \in [s , t] \times \partial \Lambda _{L}} P_{{\textbf{a}}, \infty } \left( t' , x ; s , y \right)&\le \sup _{t' \in [0, c_0]} \frac{C}{2 L^d t'^{d/2}} \exp \left( - \frac{1}{2C \sqrt{t'}} \right) \\&\le \frac{c}{2L^d} \\&\le \inf _{x \in y + \Lambda _{\sqrt{t-s}}} P_{{\textbf{a}}, \infty } \left( t , x ; s , y \right) . \end{aligned}$$

The proof of (A.15) is complete.

We now deduce the lower bound (3.6) from the inequality (A.15). To this end, let us fix a time \(t \in (s , s + c_0 L^2)\), set \(\varepsilon := \frac{1}{2} \inf _{x \in y + \Lambda _{\sqrt{t-s}}} P_{{\textbf{a}}, \infty } \left( t , x ; s , y \right) \), and define the map \(P_{{\textbf{a}}, \infty }^\varepsilon := P_{{\textbf{a}}, \infty } - \varepsilon \). Let us note that the mapping \(P_{{\textbf{a}}, \infty }^\varepsilon \) solves the parabolic equation

$$\begin{aligned} \partial _t P_{{\textbf{a}}, \infty }^\varepsilon (\cdot , \cdot ; s ,y) - \nabla \cdot {\textbf{a}}\nabla P_{{\textbf{a}}, \infty }^\varepsilon (\cdot , \cdot ; s ,y) = 0 \text{ in }~ (s , t) \times \Lambda _L . \end{aligned}$$

By the definition of the parameter \(\varepsilon \) and the inequality (A.15), the map \(P_{{\textbf{a}}, \infty }^\varepsilon \) satisfies the boundary estimates

$$\begin{aligned} \left\{ \begin{aligned} P_{{\textbf{a}}, \infty }^\varepsilon (t' , x ; s ,y)&\le 0 \le P_{\textbf{a}}(t' , x ; s ,y){} & {} (t' , x) \in [s , t] \times \partial \Lambda _L, \\ P_{{\textbf{a}}, \infty }^\varepsilon (s , x ; s ,y)&= \mathbbm {1}_{\{ x = y \}} - \varepsilon \le \mathbbm {1}_{\{ x = y \}} = P_{\textbf{a}}(s , x ; s ,y){} & {} x \in \Lambda _L^+. \end{aligned} \right. \end{aligned}$$

Applying the maximum principle for the parabolic operator \(\partial _t - \nabla \cdot {\textbf{a}}\nabla \), we obtain the inequality, for any \((t', x) \in [s , t] \times \Lambda _L\),

$$\begin{aligned} P_{{\textbf{a}}, \infty }^\varepsilon (t' , x ; s , y) \le P_{\textbf{a}}(t' , x ; s , y). \end{aligned}$$
(A.19)

Applying the estimate (A.19) at time \(t' = t\) and using the definition of the parameter \(\varepsilon \) yields, for any vertex x satisfying \(|x - y| \le \sqrt{t - s}\),

$$\begin{aligned} \frac{1}{2} P_{{\textbf{a}}, \infty } \left( t , x ; s , y \right) \le P_{\textbf{a}}^\varepsilon \left( t , x ; y , s \right) \le P_{\textbf{a}}\left( t , x ; y , s \right) . \end{aligned}$$
(A.20)

Combining the estimate (A.20) with the lower bound of Proposition A.2 implies

$$\begin{aligned} P_{\textbf{a}}\left( t , x ; y , s \right) \ge \frac{c}{1 \vee (t-s)^\frac{d}{2}}. \end{aligned}$$

The proof of the lower bound (3.6) is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dario, P., Harel, M. & Peled, R. Random-field random surfaces. Probab. Theory Relat. Fields 186, 91–158 (2023). https://doi.org/10.1007/s00440-022-01179-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-022-01179-0

Mathematics Subject Classification

Navigation